
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239632876

A novel supervised learning algorithm and its use for spam detection in social

bookmarking systems

Article · January 2008

CITATIONS

21
READS

132

2 authors:

Anestis Gkanogiannis

Athens University of Economics and Business

9 PUBLICATIONS 64 CITATIONS

SEE PROFILE

Theodore Kalamboukis

Athens University of Economics and Business

34 PUBLICATIONS 370 CITATIONS

SEE PROFILE

All content following this page was uploaded by Theodore Kalamboukis on 10 September 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/239632876_A_novel_supervised_learning_algorithm_and_its_use_for_spam_detection_in_social_bookmarking_systems?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/239632876_A_novel_supervised_learning_algorithm_and_its_use_for_spam_detection_in_social_bookmarking_systems?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anestis-Gkanogiannis?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anestis-Gkanogiannis?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Athens_University_of_Economics_and_Business?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anestis-Gkanogiannis?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Theodore-Kalamboukis?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Theodore-Kalamboukis?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Athens_University_of_Economics_and_Business?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Theodore-Kalamboukis?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Theodore-Kalamboukis?enrichId=rgreq-94a2f5b3b8f3196db8864a75534feddd-XXX&enrichSource=Y292ZXJQYWdlOzIzOTYzMjg3NjtBUzoxMzk4NzM4NDM0MjExODRAMTQxMDM1OTkzMjAyMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

ECML PKDD Discovery Challenge 2008
(RSDC’08)

International Workshop at
the European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases
in Antwerp, Belgium, September 15th, 2008.

Preface

Since 1999 the ECML/PKDD embraces the tradition of organizing a Discovery
Challenge, allowing researchers to develop and test algorithms for novel and
real world datasets. This year’s Discovery Challenge1 presents a dataset from
the field of social bookmarking to deal with two important tasks in this area:
the detection of spam and the recommendation of tags. The results submitted
by the challenge’s participants are presented at an ECML/PKDD workshop on
September 15th, 2008, in Antwerp.

The dataset provided has been created using data of the social bookmark
and publication sharing system BibSonomy2, operated by the organizers of this
challenge. The training data was released on May 5th 2008, the test data on July
30th. The participants had time until August 1st to submit their results. This
gave researchers 12 weeks time to tune their algorithms on a complete snapshot
of a real world folksonomy dataset and 48 hours to compute results on the test
data.

Spam Detection in Social Bookmarking Systems. With the growing popularity
of social bookmarking systems, spammers use this service as a playground for
their activities. Usually, they pursue two goals when placing links in the system:
Attracting people to advertising sites and increasing the PageRank of their sites
by collecting links in as many popular Web 2.0 sites as possible. A high PageRank
leads to an increase of visibility in Google and other search engines. Common
spam counter-measures such as captchas do not sufficiently prevent spammers
from misusing the system. In our system, we were able to collect data of more
than 2,000 active users and (despite the implementation of captchas for the
registration of new users) more than 25,000 spammers by manually labelling
spammers and non-spammers in the system. The challenge’s dataset consists
of these users and their posts. This includes all public information such as the
URL, the description and all tags of the post. The goal of this challenge is to
learn a model which predicts whether a user is a spammer or not. In order to
detect spammers in a running system as early as possible, the model should
make accurate predictions about users even if they only have few posts.

Tag Recommendation in Social Bookmarking Systems. To support the user dur-
ing the tagging process and to facilitate the tagging, BibSonomy includes a tag
recommender. When a user finds an interesting web page (or publication) and
posts it to BibSonomy, the system offers up to ten recommended tags on the
posting page. The goal of the recommendation task is to learn a model which
effectively predicts the keywords a user has in mind when describing a web page
(or publication).

1 http://www.kde.cs.uni-kassel.de/ws/rsdc08/
2 http://www.bibsonomy.org

http://www.kde.cs.uni-kassel.de/ws/rsdc08/
http://www.bibsonomy.org

Results. More than 150 participants registered for the mailing list which enabled
them to look at the dataset. At the end, we received 18 submissions — 13
for the spam detection task and 5 for the tag recommendation task. Thirteen
participants additionally submitted a paper — 11 of those were accepted and
can be found in the proceedings at hand.

The 13 submitted solutions of the spam competition were evaluated by com-
puting the AUC value [1]. The winning team has an AUC value of 0.98. Only
two results were below the random baseline, which shows the high quality of the
submissions. The proposed approaches varied between those heavily reliant on
feature engineering and approaches comparing many different machine learning
methods (among them kNN, SVM, Neural Networks, Naive Bayes Classifier or
Regression Models).

The winners, A. Gkanogiannis and T. Kalamboukis from Athens University,
use a text classification approach with a classifier which refines the solution
similar to approaches known from the area of relevance feedback. They consider
all posts of a user as a unified item or as a kind of “text document”, which is
further preprocessed and used in the model. The second team, J.F. Chevalier
and P. Gramme (Vadis Consulting) base their approach on a clever methodology
to extract features combined with a ridge regression method. C. Kim and K.-B.
Hwang from Soongsil University are third ranked by using a naive bayes classifier
on a selected set of tags. The selection process is driven by mutual information
and a restriction of tags to known tags from the test dataset.

A combination of a language model and kNN is used by Bogers and Bosch,
links of a co-occurrence network of tags and resources form the basis in the
work of Krestel and Chen, and text clustering is the underlying technique to
get an extended feature set combined with a text classification approach in Kyr-
iakopoulou and Kalamboukis. Madkour et. al. investigate the applicability of
kNN, Gaussian process, SVM, Neural Networks and NN combined with SVM
for the spam prediction task and Neubauer and Obermayer use co-occurrence,
network and text features to set up an SVM model. All the approaches demon-
strate the applicability of machine learning methods to solve the spam prediction
task.

Unfortunately, we received only three submissions for the tag recommender
challenge. The winners with an F-Measure of 0.19 are M. Tatu and colleagues
from Lymba Corporation. They use a natural language approach to generate tag
recommendations. The approach includes an extensive preprocessing to clean the
data. The good results mainly stem from an extension of the folksonomy data
with conceptual information from Wordnet and from further external resources.
M. Lipczak (Dalhousie University) is second. He developed a three step approach
which utilizes words from the title expanded by a folksonomy driven lexicon,
personalized by the tags of the posting user. Katakis et. al. from the Aristotle
University of Thessaloniki come in third by considering the recommender task
as a multilabel text classification problem with tags as categories.

As the topic of this year’s challenge is related to the topic of the workshop:
“Wikis, Blogs, Bookmarking Tools — Mining the Web 2.0 Workshop”, we think

that both events will benefit from each other. By collocating the challenge work-
shop and the Mining the Web 2.0 Workshop we combine different contributions
of the same community and hope to enable fruitful discussions of results, chal-
lenges and ideas in this field.

We thank all participants of the challenge for their contributions and the or-
ganizers of the ECML/PKDD 2008 conference for their support. We are looking
forward to a very exciting and interesting workshop.

Kassel, August 2008

Andreas Hotho, Beate Krause, Dominik Benz, Robert Jäschke

References

1. T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers.
Technical report, HP Laboratories, 2004.

Table of Contents

Using Language Models for Spam Detection in Social Bookmarking 1
Toine Bogers, Antal van den Bosch

A novel supervised learning algorithm and its use for Spam Detection
in Social Bookmarking Systems . 13

Anestis Gkanogiannis, Theodore Kalamboukis

Rank for spam detection - ECML Discovery Challenge 21
Jean-François Chevalier, Pierre Gramme

Naive Bayes Classifier Learning with Feature Selection for Spam
Detection in Social Bookmarking . 32

Chanju Kim, Kyu-Baek Hwang

Using Co-occurence of Tags and Resources to Identify Spammers 38
Ralf Krestel, Ling Chen

Combining Clustering with Classification for Spam Detection in Social
Bookmarking Systems . 47

Antonia Kyriakopoulou, Theodore Kalamboukis

Using Semantic Features to Detect Spamming in Social Bookmarking
Systems . 55

Amgad Madkour, Tarek Hefni, Ahmed Hefny, Khaled S. Refaat

Predicting Tag Spam Examining Cooccurrences, Network Structures
and URL Components . 63

Nicolas Neubauer, Klaus Obermayer

Multilabel Text Classification for Automated Tag Suggestion 75
Ioannis Katakis, Grigorios Tsoumakas, Ioannis Vlahavas

Tag Recommendation for Folksonomies Oriented towards Individual Users 84
Marek Lipczak

RSDC’08: Tag Recommendations using Bookmark Content 96
Marta Tatu, Munirathnam Srikanth, Thomas D’Silva

Using Language Models for Spam Detection
in Social Bookmarking

Toine Bogers and Antal van den Bosch

ILK, Tilburg University
P.O. Box 90153, 5000 LE
Tilburg, The Netherlands

{A.M.Bogers,Antal.vdnBosch}@uvt.nl

Abstract. This paper describes our approach to the spam detection task of
the 2008 ECML/PKDD Discovery Challenge. Our approach focuses on the use
of language models and is based on the intuitive notion that similar users
and posts tend to use the same language. We compare using language models
at two different levels of granularity: at the level of individual posts, and
at an aggregated level for each user separately. To detect spam users in the
system, we let the users and posts that are most similar to incoming users and
their posts determine the spam status of those new users. We first rank all
users in the system by KL-divergence of the language models of their posts—
separately and combined into user profiles—and the language model of the
new post or user. We then look at the spam labels assigned to the most similar
users in the system to predict a spam label for the new user. We evaluate on
a snapshot of the social bookmarking system BibSonomy made available for
the Discovery Challenge. Our approach achieved an AUC score of 0.9784 on
an internal validation set and an AUC score of 0.9364 on the official test set
of the Discovery Challenge.

Key words: Social bookmarking, language modeling, spam detection, BibSonomy

1 Introduction

A prominent feature of the Web 2.0 paradigm is a shift in information access from
local and solitary, to global and collaborative. Instead of storing, managing, and
accessing personal information on only one specific computer or browser, personal
information management and access has been moving more and more to the Web.
Social bookmarking websites are clear cases in point: instead of keeping a local copy
of pointers to favorite URLs, users can instead store and access their bookmarks
online through a Web interface. The underlying application then makes all stored
information sharable among users, allowing for improved searching and generating
recommendations between users with similar interests.

Any system that relies on such user-generated content, however, is vulnerable
to spam in one form or another. Indeed, many other electronic systems that allow
users to store, share, and find online resources have also come under attack from
spamming attempts in recent years. Search engines, for instance, suffer increasingly

1

2 Toine Bogers and Antal van den Bosch

from so-called spamdexing attempts with content especially created to trick search
engines into giving certain pages a higher ranking for than they deserve [1]. Spam
comments are also becoming an increasingly bigger problem for websites that allow
users to react to content, like blogs and video and photo sharing websites [2].

Social websites and social bookmarking services have been becoming an increas-
ingly popular part of the Web, but their focus on user-generated content also makes
them vulnerable to spam, threatening their openness, interactivity, and usefulness
[3]. Motivation for spamming can range from advertising and self-promotion to
disruption and disparagement of competitors. Spamming is economically viable be-
cause the barrier for entry into the abused systems is generally low and because
it requires virtually no operating costs beyond the management of the automatic
spamming software. In addition, it is often difficult to hold spammers accountable
for their behavior.

Spam for social bookmarking is a growing problem and this has been acknowl-
edged by making it one of the tasks of the 2008 ECML/PKDD Discovery Challenge,
along with tag recommendation. In this paper, we focus on the spam detection task
alone. Our approach to spam detection is based on the intuitive notion that spam
users will use different language than ‘legitimate’ users when posting resources to a
social bookmarking system. We detect new spam users in the system by first ranking
all the old users in the system by the KL-divergence of the language models of their
posts—separately and combined into user profiles—and the language model of the
new user or post. We then look at the spam labels assigned to the most similar users
in the system to predict a spam label for the new user.

The paper is structured as follows. We start off by reviewing the related work
in the next section, followed by a description of the task and the data set, our pre-
processing steps, and our evaluation setup in Section 3. In Section 4, we discuss
our approach to the spam detection task. Our results are presented in Section 5. We
discuss our findings and conclude in Section 6.

2 Related Work

Spam issues in social bookmarking services have received relatively little attention
so far. Heymann et al. (2007) examined the relationship between spam and social
bookmarking in detail and classified the anti-spam strategies commonly in practice
into three different categories: prevention, detection, and demotion [3]. Prevention-
based approaches are aimed at making it difficult to contribute spam content to
the social bookmarking system by restricting certain types of access through the
interface (such as CAPTCHAs) or through usage limits (such as post or tagging
quota).

Spam detection methods try to identify likely spam either manually or automat-
ically, and then act upon this identification by either deleting the spam content or
visibly marking it as such for the user [3]. To our knowledge, the only published
effort of automatic spam detection for social bookmarking comes from Krause et al.
(2008) who investigated the usefulness of different machine learning algorithms
and features to automatically identify spam [4]. They tested their algorithms on a

2

Using Language Models for Spam Detection in Social Bookmarking 3

data dump of the BibSonomy system. This data set was not the same as the one
used in the 2008 Discovery Challenge and contained many features not available
for the Discovery Challenge task.

Demotion-based strategies, finally, focus on reducing the prominence of content
likely to be spam. Rank-based methods, for instance, try to produce orderings of
the system’s content that are both more accurate and more resistant to spam [3]. A
demotion-based strategy for combating spam is described by Heymann et al. (2007)
and described in more detail in Koutrika et al. (2007). They constructed a simplified
model of tagging behavior in a social bookmarking system and compared different
ranking methods for tag-based browsing. They investigated the influence of various
factors on these rankings, such as the proportion and behavior of spam users and
tagging quota [5], and found that ranking methods that take user similarity into
account are more resistant to manipulation.

If we cast our nets a bit wider than just social bookmarking, we can find more
anti-spam approaches in related fields, such as blogs. Mishne et al. (2005) were
among the first to address the problem of spam comments in blogs and used lan-
guage model disagreement between the blog post itself, the comments, and any
pages linked to from the comments to identify possible spam comments [2]. In
2006, the TREC Blog Track also paid attention the problem of blog spam [6].

Finally, the data set for the 2008 Discovery Challenge is based on the BibSonomy
social bookmarking service and, in addition to spam detection and tag recommen-
dation, more research has been done using this system. See [4] for a short overview
of the related work.

3 Methodology

3.1 Task description

We include a brief description of the spam detection task and the data in this section
to allow this paper to be self-contained. The goal of the spam detection task of
the Discovery Challenge was to automatically detect spam users in the provided
snapshot of BibSonomy. The goal was to learn a model that can predict whether a
user is a spammer or not. An added requirement was that the model should make
good predictions for initial posts made by new users, in order to detect spammers
as early as possible. This decision to identify spam at the user level—instead of at
the post level—means that all of a user’s posts are automatically labelled as spam.
This decision was justified earlier1 in Krause et al. (2008) by the observation that
users with malicious intent often attempt to hide their motivations with non-spam
posts [4]. In addition, Krause et al. also cite workload reduction as a reason for the
decision to classify at the user level.

1 Krause et al. are also the organizers of the 2008 Discovery Challenge, hence the same
justification applies. Unfortunately, it is not clear if the results reported in their 2008 paper
were achieved on the same data set as the one made available for the Discovery Challenge.

3

4 Toine Bogers and Antal van den Bosch

3.2 Data

For the spam detection task a snapshot was made available of the BibSonomy sys-
tem as a MySQL dump, which consisted of all resources posted to BibSonomy be-
tween its inception and March 31, 2008. Two types of resources are present in the
data set: bookmarks and BibTeX records. The training data set contained flags that
identify users as spammers or non-spammers. The Discovery Challenge organizers
were able to collect data of more than 2,400 active users and more than 29,000
spammers by manually labeling users. These labels were included in the data set
for training and tuning parameters. Table 1 shows some simple statistics of the data
set and illustrates the skewness present in the data set, both in terms of spammers
and ‘legitimate’ users, and looking at the strong preference for bookmarks among
spammers and BibTeX among legitimate users.

Table 1. Statistics of the BibSonomy data set.

count

resources 14,074,956
bookmark, spam 13,257,519
bookmark, clean 596,073
BibTeX, spam 1,240
BibTeX, clean 220,124

users 31,715
spam 29,248
clean 2,467

average posts/user 59.8
spam 55.6
clean 108.9

tags 424,963
spam 69,902
clean 379,888

average tags/post 7.5
spam 8.2
clean 3.0

As mentioned before, two types of resources can be posted: bookmarks and Bib-
TeX records, the latter with a magnitude more metadata available. In our approach
we decided to treat BibTeX records and bookmarks the same and thus use the same
format to represent them both. We represented all resource metadata in an TREC-
style SGML format using 4 fields: <TITLE>, <DESCRIPTION>, <TAGS>, and <URL>. For
the bookmarks, the title information was taken from the book_description field,
whereas the title field was used for the BibTeX records. The <DESCRIPTION> field
was filled with the book_extended field for bookmarks, whereas the following fields
were used for the BibTeX records: journal, booktitle, howPublished, publisher,
organization, description, annote, author, editor, bibtexAbstract, address,

4

Using Language Models for Spam Detection in Social Bookmarking 5

school, series, and institution. For both resource types all tags were added
to the <TAGS> field. The URLs extracted from the book_url and url fields were
pre-processed before they were used: punctuation was replaced by whitespace and
common prefixes and suffixes like www, http://, and .com were removed. Figure 1
shows an example of an instance of our XML representation.

<DOC>
<DOCNO> 694792 </DOCNO>
<TITLE>

When Can We Call a System Self-Organizing
</TITLE>
<DESCRIPTION>

ECAL Carlos Gershenson and Francis Heylighen
</DESCRIPTION>
<TAGS>

search agents ir todo
</TAGS>
<URL>

springerlink metapress openurl asp genre article issn 0302 9743
volume 2801 spage 606

</URL>
</DOC>

Fig. 1. An example of one of the posts (#694792) in our SGML representation.

Other than the data present in the provided data set, we did not use any other,
external information, such as, for instance, the PageRank of the bookmarked Web
page.

3.3 Evaluation

To evaluate our different approaches and optimized parameters, we divided the
data set up into a training set of 80% of the users and a validation set of the re-
maining 20%. We evaluated our approaches on this validation set using the stan-
dard measures of AUC (area under the ROC curve) and F-score, the harmonic mean
of precision and recall, with β set to 1. We optimized k using AUC rather than F-
score, as AUC is less sensitive to class skew than F-score [7], and the data is rather
skewed with 12 spam users for every clean user. For the final predictions on the
official test set we used all of the original data as training material.

4 Spam Detection

4.1 Language Models for Spam Detection

Our approach to spam detection is based on the intuitive notion that spam users
will use different language than legitimate users when posting resources to a social
bookmarking system. By comparing the language models of posts made by spam-
mers and posts made by legitimate users, we can use the divergence between the

5

6 Toine Bogers and Antal van den Bosch

models as a measure of (dis)similarity. After we have identified the k most similar
posts or users using language modeling, we classify new users as spam users or
genuine users by scoring these new users by how many spam posts and how many
clean posts were found to be similar to it.

Language models [8] are a class of stochastic n-gram models, generally used
to measure a degree of surprise in encountering a certain new span of text, given
a training set of text. The core of most language models is a simple n-gram word
prediction kernel that, based on a context of two or three previous words, generates
a probability distribution of the next words to come. Strong agreement between the
expected probabilities and actually occurring words (expressed in perplexity scores
or divergence metrics) can be taken as indications that the new text comes from the
same source as the original training text. Language models are an essential com-
ponent in speech recognition [9] and statistical machine translation [10], and are
also an important model in information retrieval [11]. In the latter context, sepa-
rate language models are built for each document, and finding related documents to
queries is transformed into ranking documents by the likelihood, estimated through
their language model, that each of them generated the query.

In generating document language models, there is a range of options on the
granularity level of what span of text to consider a document. At the most detailed
level, we can construct a language model for each individual post, match these to
the incoming posts, and use the known spam status of the best-matching posts al-
ready in the system to generate a prediction for the incoming posts or users. We
can also take a higher-level perspective and collate all of a user’s posts together
to form large documents that could be considered ‘user profiles’, and generate lan-
guage models of these individual user profiles. Incoming posts or users can then be
matched against the language models of spammers and clean users to classify them
as being more similar to one or the other category. Figure 2 shows how these two
levels of language models relate to one another.

language model user 2

language model post 5

language model post 6

language model post 7

language model post 8

. . .

language model user 1

language model post 1

language model post 2

language model post 3

language model post 4

language model user N

language model post (k - 3)

language model post (k - 2)

language model post (k - 1)

language model post k

Fig. 2. Two types of language models: the models of the individual posts and the
models of the user profiles.

6

Using Language Models for Spam Detection in Social Bookmarking 7

A third option—at an even higher level of granularity—would be to only con-
sider two language models: one of all spam posts and one of all clean posts. How-
ever, we believe this to be too coarse-grained for accurate prediction, so we did
not pursue this further. Another extension to our approach would have been to use
language models for the target Web pages or documents such as proposed by [2].
However, it is far from trivial to obtain the full text of all the source documents
linked to by the BibTeX posts. Crawling all the target Web pages of the 2.2 million
bookmark posts is impractical as well. Furthermore, we suspect that incorporating
language models from all externally linked Web pages and documents would slow
down a real-time spam filtering system to an undesirable degree.

We used the Kullback-Leiber divergence metric to measure the similarity be-
tween the language models. The KL-divergence measures the difference between
two probability distributions Θ1, Θ2 is

K L(Θ1||Θ2) =
∑

w

p(w|Θ1) log
p(w|Θ1)
p(w|Θ2)

(1)

where p(w|Θ1) is the probability of observing the word w according to the
model Θ1 [2, 8].

The Indri toolkit2 implements different retrieval methods based on language
modeling. We used this toolkit to perform our experiments and construct and com-
pare the language models of the posts and user profiles. The language models we
used are maximum likelihood estimates of the unigram occurrence probabilities. We
used Jelinek-Mercer smoothing to smooth our language models, which interpolates
the language model of a post or user profile with the language model of back-
ground corpus, which in our case is the training collection of posts or user profiles.
We chose Jelinek-Mercer smoothing because it has been shown to work better for
verbose queries than other smoothing methods such as Dirichlet smoothing [12].

We performed two different sets of experiments. First, we compared the lan-
guage models of the user profiles in our validation set with the language models of
the profiles in our training set. For each test user profile we obtained a ranked list
of best-matching training users. In addition, we did the same at the post level by
comparing the test post language models with the language models of the training
posts. Here, ranked lists of best-matching posts were obtained for each test post.
These similarity rankings were normalized, and used as input for the spam classifi-
cation step described in the next subsection.

For both the user and the post level we used all of the available fields—title,
description, tags, and tokenized URL—to generate the language models of the posts
and user profiles in our training collection. For the new posts and user profiles in our
validation and test sets, however, we experimented with selecting only single fields
to see what contribution each field could make to the spam detection process. This
means that we have four extra sets of representations of the incoming validation
and test documents, each with information from only one of the fields, bringing our
total of representations for each of the two levels to five.

2 Available at http://www.lemurproject.org

7

8 Toine Bogers and Antal van den Bosch

4.2 Spam Classification

After we calculated the language models for all posts and user profiles, we obtained
the normalized ranking of all training documents, relative to each test post or user
profile. For each of the best-matching training documents, we used the manually
assigned spam labels of 0 or 1 to generate a single spam score for the new user.
The simplest method of calculating such a score would be to output the spam label
of the top-matching document. A more elegant option would be to take the most
common spam label among the top k hits. However, we settled on calculating a
weighted average of the similarity scores multiplied by the spam labels, as prelim-
inary experiments showed this to outperform the other options. In the rare case
that no matching documents could be retrieved, we resorted to assigning a default
label of no spam (0) for these 0.7% of test users, as in our training set 84.2% of
these unmatched users were not spammers. For post-level classification, this meant
we obtained these weighted average spam scores on a per-incoming-post basis. To
arrive at user-level spam scores, we then matched each incoming post to a user and
calculate the average per-post score for each user.

One question remains: how many of the top matching results should be used to
predict the spam score? In this, our approach is similar to a k-nearest neighbor clas-
sifier, where the number of best-matching neighbors k determines the prediction
quality. Using too many neighbors might smooth the pool from which to draw the
predictions too much in the direction of the majority class, while not considering
enough neighbors might result in basing too many decisions on accidental similar-
ities. We optimized the optimal value for k for all of the variants separately on the
AUC scores.

5 Results

Table 2 lists the results of our different spam detection approaches. At the user level,
the validation set representation where we only used the tags to construct our lan-
guage models surprisingly outperformed all other approaches and representations,
including the one with metadata from all fields. It achieved an AUC score of 0.9784
and the second highest F-score of all user-level representations at 0.9767. Our sub-
mission to the Discovery Challenge task was therefore made using this approach.
The second best approach compared the language models of user profiles that used
all metadata fields and achieved an 0.9688 AUC score. Overall, using the user-level
language models outperformed the post-level language models.

Figures 3 and 4 shows the ROC curves for the 10 different combinations of
fields and matching level. One surprising difference between the post-level and the
user-level experiments is that at the user level the representation with only the tags
works best, while it performs worst at the post level. Another interesting difference
between post- and user-level experiments is the difference in the optimal number
of nearest neighbors k. Matching users appears to require a considerably greater
number of neighbors than arriving at a spam classification using only individual
posts’ language models.

8

Using Language Models for Spam Detection in Social Bookmarking 9

Table 2. Spam detection results of the two approaches on the validation set. The
optimal neighborhood sizes k were optimized on AUC scores. Best scores for each
metric and level are printed in bold.

Level Fields Precision Recall F-score AUC k

user-level all fields 0.9659 0.9986 0.9820 0.9688 180
title 0.9534 0.9909 0.9718 0.9308 140
description 0.9543 0.9976 0.9755 0.9228 95
tags 0.9580 0.9961 0.9767 0.9784 195
url 0.9502 0.9311 0.9406 0.8478 450

post-level all fields 0.9735 0.9950 0.9842 0.9571 50
title 0.9664 0.9815 0.9739 0.9149 50
description 0.9707 0.9416 0.9559 0.8874 75
tags 0.9804 0.7448 0.8465 0.7700 10
url 0.9773 0.8940 0.9338 0.8730 15

Our submitted run on the test set provided by the Discovery Challenge used only
the tags of each user to compare the language models with k set to 195. Classifying
the incoming users as spammers or clean users achieved an AUC score of 0.9364.
Precision was 0.9846, recall 0.9748, and the F-score 0.9797.

6 Discussion & Conclusions

In this paper we presented our language modeling approach to the spam detection
task of the 2008 Discovery Challenge. We start by using language models to identify
the best-matching posts or user profiles for incoming users and posts. We then look
at the spam status of those best-matching neighbors and use them to guide our spam
classification. Our results indicate that our language modeling approach to spam
detection in social bookmarking systems shows promising results. This confirms the
findings of [2], who applied a similar two-stage process using language modeling
to detecting blog spam, albeit on a much smaller scale.

We experimented with matching language models at two different levels of
granularity and found that, in general, matching at the user-level gave the best
results. This was to be expected as the spam labels for the users in the data set were
judged and assigned at the user-level. This means that the misleading, ’genuine’
posts of spam users were automatically flagged as spam, thereby introducing more
noise for the post-level matching than for the user-level matching.

The best performance at the user level was achieved by matching user-level
language models using only the tags of the incoming users’ posts. This is in line
with the findings of [4], where the features related to the usage and content of tags
were also found to be among the most important. Interestingly enough, matching
posts only the incoming posts’ tags resulted in the worst performance of all post-
level runs. We can think of two likely explanations for this. The first is that the post-
level approach is more likely to suffer from incoming posts without any assigned

9

10 Toine Bogers and Antal van den Bosch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

 R
at

e

FP Rate

ROC curve (user-level language models)

all fields
title

description
tags

url

Fig. 3. ROC curve at the user level

tags than the user-level approach is. Although 99.95% of all posts in the data set
have valid tags3, this also means that it is possible for incoming posts to have no
tags. Without any tags as metadata, our approach cannot find any matching posts
in the system. At the user level, this is even less likely to happen: only 0.009% of
all users never assign any tags. However, this might still be a valid reason to use
all metadata fields for the user-level approach: with all available metadata we can
increase coverage, because empty posts are not allowed by any social bookmarking
system.

The second reason illustrates a possible limitation of our approach at the same
time: spammers will change their behavior over time and might have done so in
the time period the test set originates from. By generating metadata with a simi-
lar language model to the clean posts in the system, spammers could make it more
complicated for our approach to distinguish between themselves and genuine users.
However, this also makes it more difficult for the spammers themselves: it is very
hard for a spammer to post resources to a social bookmarking system that will
be both similar to existing posts and to the language of the spam entry. In addi-
tion, such behavior could easily be countered by extending our method to include
the language models of the target resources or by including other features such
as the PageRank of bookmarked pages. Extending our approach in such a way is

3 Valid meaning with a tag other than system:unfiled.

10

Using Language Models for Spam Detection in Social Bookmarking 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

 R
at

e

FP Rate

ROC curve (post-level language models)

all fields
title

description
tags

url

Fig. 4. ROC curve at the post level

one of the possible avenues for future work. Another would be to also restrict the
language models of the training set to only certain fields and seeing how this in-
fluences performance. Finally, we would also like to test our approach on another
social bookmarking system to see how our algorithms carry over to other systems.

One particular advantage of our approach is that it could be implemented with
limited effort on top of an existing social bookmarking search engine. After any
standard retrieval runs, the top k matching results can then be used to generate the
spam classification, only requiring a lookup of predetermined spam labels.

As a final note we wish to briefly describe some of our experiences with applying
language models to the other Discovery Challenge task of tag recommendation. By
using a similar two-stage approach of first identifying similar posts and then aggre-
gating the most popular tags associated with those best-matching posts, we were
only able to achieve a maximum F-score of around 0.10. This clearly illustrates that
an approach of finding the system-wide best matching posts for tag recommenda-
tion is not a good approach. We believe the reason for this to be that tagging, unlike
spamming, is a much more personal activity: the tags another person assigned to
the same resource need not necessarily be the tags a new user would apply. For
spam detection our method only needs to assign one out of two possible labels to a
new user, instead of picking 10 correct tags from a set of hundreds of thousands of
possible tags for a new post. We therefore believe our language modeling approach
to be better suited to the spam detection than to the tag recommendation.

11

12 Toine Bogers and Antal van den Bosch

Acknowledgments

The work described in this paper was funded by SenterNovem / the Dutch Ministry
of Economics Affairs as part of the IOP-MMI À Propos project, and by the Nether-
lands Organization for Scientific Research as part of the NWO Vernieuwingsimpuls
program.

Bibliography

[1] Gyöngyi, Z., Garcia-Molina, H.: Web Spam Taxonomy. In: AIRWeb ’05: Pro-
ceedings of the 1st International Workshop on Adversarial Information Re-
trieval on the Web, Chiba, Japan (May 2005) 39–47

[2] Mishne, G., Carmel, D., Lempel, R.: Blocking Blog Spam with Language Model
Disagreement. In: AIRWeb ’05: Proceedings of the 1st International Workshop
on Adversarial Information Retrieval on the Web, New York, NY, USA, ACM
(2005) 1–6

[3] Heymann, P., Koutrika, G., Garcia-Molina, H.: Fighting Spam on Social Web
Sites: A Survey of Approaches and Future Challenges. IEEE Internet Comput-
ing 11(6) (2007) 36–45

[4] Krause, B., Hotho, A., Stumme, G.: The Anti-Social Tagger - Detecting Spam
in Social Bookmarking Systems. In: AIRWeb ’08: Proceedings of the 4th Inter-
national Workshop on Adversarial Information Retrieval on the Web. (2008)

[5] Koutrika, G., Effendi, F.A., Gyöngyi, Z., Heymann, P., Garcia-Molina, H.: Com-
bating Spam in Tagging Systems. In: AIRWeb ’07: Proceedings of the 3rd In-
ternational Workshop on Adversarial Information Retrieval on the Web, New
York, NY, USA, ACM (2007) 57–64

[6] Ounis, I., de Rijke, M., McDonald, C., Mishne, G., Soboroff, I.: Overview of
the TREC 2006 Blog Track. In: TREC 2006 Working Notes. (2006)

[7] Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers.
Machine Learning 31 (2004)

[8] Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, MA (1999)

[9] Jelinek, F.: Self-organized Language Modeling for Speech Recognition. Read-
ings in Speech Recognition (1990) 450–506

[10] Brown, P.F., Cocke, J., Della Pietra, S.A., Della Pietra, V.J., Jelinek, F., Lafferty,
J., Mercer, R.L., Roossin, P.S.: A Statistical Approach to Machine Translation.
Computational Linguistics 16(2) (1990) 79–85

[11] Ponte, J.M., Croft, W.B.: A Language Modeling Approach to Information Re-
trieval. In: SIGIR ’98: Proceedings of the 21st Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval, New
York, NY, ACM Press (1998) 275–281

[12] Zhai, C., Lafferty, J.: A Study of Smoothing Methods for Language Models
Applied to Information Retrieval. ACM Transactions on Information Systems
22(2) (2004) 179–214

12

A novel supervised learning algorithm and its
use for Spam Detection in Social Bookmarking

Systems

Anestis Gkanogiannis and Theodore Kalamboukis

Department of Informatics
Athens University of Economics and Business, Athens, Greece

utumno@aueb.gr tzk@aueb.gr

Abstract. A novel fast and accurate supervised learning algorithm is
proposed as a general text classification algorithm for linearly separated
data. The strategy of the algorithm takes advantage of the training errors
to successively refine an initial classifier. Experimental evaluation of the
proposed algorithm on standard text collections, show that results com-
pared favorably to those from state of the art algorithms such as SVMs.
Experiments conducted on the datasets provided in the framework of the
ECDL/PKDD 2008 Challenge for Spam Detection in Social Bookmark-
ing Systems, demonstrate the effectiveness of the proposed algorithm.

1 Introduction

Text categorization is the process of making binary decisions about related or
non-related documents to a given set of predefined thematic topics or categories.
The task is an important component in many information management organi-
zations. In our participation on the ECML/PKDD challenge 2008 we have not
deviate from the classical supervised text classification paradigm.

Support vector machines (SVMs) [1] have shown the best performance for
text classification tasks. They are accurate, robust, and quick when applied to
test instances. Their only drawback is their training complexity and memory
requirements. In what follows we present an algorithm, which overcomes both
these problems. The strategy of the proposed algorithm takes advantage of the
training errors (misclassified examples) to successively refine an initial classifier.
This refinement takes the form of an iterative Rocchio-like relevance feedback-
learning technique to adjust the centroid vectors of the categories, in order to
maximize the performance of the classifier. Our learning algorithm runs on batch
mode using all the training data at each iteration step.

Rocchio’s relevance feedback technique [2] is a query modification process
that has been extensively investigated in the literature and used in information
retrieval. Relevance feedback improves the query with terms that are considered
relevant to the information neek. This is done iteratively either manually or
automatically by selecting a predefined set of the top retrieved documents as
relevant (pseudo-relevance feedback). The aim is to find the optimum query,

13

2

that is a query that maximizes the similarity with relevant documents while
minimizing similarity with non-relevant documents. If R(R̄) is the set of relevant
(non-relevant) documents, then we wish to find, Qopt, such that:

Qopt = argmaxq sim(q,R) − sim(q, R̄) (1)

where sim(q,R) denotes the similarity of the query to the set of relevant docu-
ments. Using as similarity measure the cosine formula, we get that:

−→
Qopt =

1
|R|

dj∈R

−→
d j −

1
|R̄|

dj∈R̄

−→
d j = −→

C R −
−→
C R̄ (2)

Thus, the optimum query is a vector defined by the difference of the centroids
of the relevant and non-relevant documents, as it is shown in Figure 1a. In other
words Qopt defines a hyperplane, h : −→Qopt ·

−→x − θ = 0 that separates the sets, R

and R̄, for an appropriate value of θ.

(a)

−→
C R

−→
C R

h

h

(b)

−→
C R̄

R̄

R̄

R

R

−→
C R̄

Fig. 1. Vector CR − CR̄ is not always the optimum as it is the case in (1b)

This is not, however, always the case as it is shown in Figure 1b, where
the query defined by equation (2) is not optimum although the sets R, R̄ are
linearly separable and as a consequense there is a hyperplane that separates
them. Algorithmically the relevance feedback process has been implemented by
updating the query iteratively according to the following equation:

−→
Q i+1 = κ

−→
Q i +

λ

|R|
dj∈R

−→
d j −

μ

|R̄|
dj∈R̄

−→
d j (3)

for a given initial query vector, −→
Q0, where the constants κ, λ, μ are control

parameters defined empirically. From (3) follows that the optimal query is, in
general, a linear combination of the relevant and non-relevant documents. In the

14

3

following we shall use the described Rocchio’s feedback technique in construct-
ing a classifier for a pair of linearly separable sets. The algorithm starts with
an initial classifier, defined in (2), which is improved iteratively applying the
relevance feedback technique on the misclassified examples (Figure 1b). In the
next paragraph we describe the algorithm in more detail.

The rest of the paper is organized as follows. Section 2 provides a short de-
scription of the proposed algorithm. Section 3 present briefly the task of spam
detection in social bookmarking systems and the preprocessing of the data. Sec-
tion 4 presents the experimental results and finally in section 5 we conclude on
the results and the advantages of the proposed algorithm.

2 The Learning Algorithm

We briefly describe here a modification of an algorithm [3], which has been
tested, on several standard text collections describing a consistent behavior over
all these collections with a performance comparable to SVMs, a state of the art
classification algorithm. The algorithm constructs a common tangent hyperplane
for the sets R,R̄ such that these sets lie on opposite sides of the hyperplane.

h(1)−→
C R

R

R̄

−→
C R̄

h(0)

β(
−→
C NA −

−→
C R̄)

−→
d p

−→
C NA

Fig. 2. Rotation of hyperplane h
(0) towards the misclassified examples

Initialization of the algorithm:

– Select initial vector −→
W

(0)
= −→

C
(0)

R −
−→
C

(0)

R̄

– Calculate sj = −→
W

(0)
·
−→
d j , ∀ dj ∈ R ∪ R̄

– Find sp such that sp = min(−→W
(0)

·
−→
d j) , ∀dj ∈ R

15

4

The hyperplane defined by h(0) : −→W
(0)

· −→x − θ = 0, with θ = sp = −→
W

(0)
·
−→
d p

by construction is vertical to the vector −→
W

(0)
and −→

d p lies on it (θ was defined
at the value of recall = 1).

By construction all the relevant documents lie on the same side of h(0),
the one pointed by its normal vector −→

W
(0)

. If it happens all the non-relevant
examples to lie on the other side of h(0), then h(0) is a separating hyperplane
and the algorithm stops. However this is not generally the case, as it is shown in
Figure 2, where the hyperplane h(0) defined by the above process, intersects the
set of non-relevant documents and the examples in the gray area are misclassified.
In this case we rotate the hyperplane h(0) towards the misclassified examples
(Negative Accepted (NA) examples) until all the negative examples lie on the
same side of the hyperplane.

Rotation of h(0) towards the misclassified examples: The rotation
of the hyperplane is performed stepwise. At each step we determine the mis-
classified, NA, training examples by the current classifier, construct their cen-
troid vector, −→C NA, and then rotate the hyperplane forcing it to pass through
the points −→

d p and −→
C NA. This is equivalent to the process of moving −→

C R̄ to-
wards the misclassified examples −→

C NA by adding the vector β(−→C NA −
−→
C R̄),

i.e. −→
C R̄ ←

−→
C R̄ + β(−→C NA −

−→
C R̄), such that the plane defined by −→

W
(1)

=
−→
C R − (−→C R̄ + β(−→C NA −

−→
C R̄)) passes through the points −→

d p and −→
C NA. With

little algebra we estimate the value of the parameter β by:

β =
−→
W

(0)
· (−→C NA −

−→
d p)

(−→C NA −
−→
C R̄) · (−→C NA −

−→
d p)

(4)

This rotation however may cause examples in the set R to be misclassified (PR,
the set of Positive Rejected examples). Thus the process is repeated now on
the set R by moving −→

C R towards the centroid of the misclassified examples
−→
C PR, i.e. −→C R ←

−→
C R + α(−→C PR −

−→
C R), such that the plane defined by −→

W
(2)

=
(−→C R+α(−→C PR−

−→
C R))−−→

C R̄, passes through the points −→C PR and −→
C NA. Similarly

we find that the parameter α is determined by:

α = −

−→
W

(1)
· (−→C PR −

−→
C NA)

(−→C PR −
−→
C R) · (−→C PR −

−→
C NA)

(5)

This alternation of the rotation towards either the NA or the PR continues until
|NA| = |PR| = 0 or the number of iteration exceeds a predetermined value. This
process converges to a common tangent hyperplane that leaves the sets R and
R̄ on opposite sides of the hyperplane.

3 Task Description

This year’s challenge deals with two tasks about a new area called social book-
marking. Internet sites of this type offer to users the ability to share with each

16

5

other material such as links to web pages, scientific publications and etc. The
first task of this year’s challenge deals with spam detection in such systems,
whereas the second one deals with tag recommendations.

Spammers have already discovered that social bookmarking sites provide
them with a large and continuously growing pool of potential customers. In
fact it is much more attractive a spam post in a social bookmarking site than
an annoying e-mail in someone’s e-mail box. This task tries to identify such
spam posts, using previously manually assigned as spam or not data from a
well known social bookmarking site. The second task is about assisting the users
when posting a new post, suggesting them with the appropriate tags that should
accompany their post. The same non spam data used for the first task is used for
training models for the second task. We have only submitted a solution for the
first task, so in the rest of this paper we will refer to that task of the challenge.

The evaluation of the submissions was performed using the correct user labels
as spammers or not and the participants ranked lists, with the Area Under the
ROC (Receiver Operating Characteristics) Curve as an evaluation measure.

3.1 Data Description

The data used to train the model for the spam task, was taken by a well known
social bookmarking site. Users of this site post their favorite links or publications,
along with tags they assign to them. A snapshot was taken and all these posts
where manually assigned as spam or not spam. More precisely each user of the
site was labeled as spammer or not based on his posts. The final raw data where
organized in 7 text files. 3 of them (tas, bookmark, bibtex) contain the data
of spammers, 3 (tas spam, bookmark spam, bibtex spam) of them contain the
data of not spammers and the final file (user spam) contains the true labels of
the users as spammers or not.

Each post of a user may be a link to a web page (bookmark) or a link to
a publication (bibtex). Files bookmark spam and bookmark contain the book-
mark posts of spammer and not spammer users, files bibtex spam and bibtex
contain the publication posts respectively and finally the files tas spam and tas
contain the posts of the users along with the assigned tags and references to the
appropriate bookmark or bibtex entry.

In the first step of the preprocessing stage of the data we had to organize
the raw text in a user basis. This means that for each user, spammer or not, we
unified all of his posts, bibtex or bookmark. Each user was identified by a unique
id and after this step for each user id we had a text fragment representing all
of his posts, which means a text containing all the tags, all the bookmark posts
and all the bibtex posts.

The second step of the preprocessing stage removes any unnecessary text,
like common or stop words, performs stemming, using Porter’s stemmer, and
finally extracts the features of the dataset and produces the vectors of the users.

The final train dataset contains 31,715 user vectors (29,248 for spammers
and 2,467 for not spammers). We found 244 spam and 84,298 not spam unique
bibtex entries, 1,626,560 spam and 176,147 not spam unique bookmark entries.

17

6

The dimensionality of the vector space was 480,062, which means that the final
datasets contains 480,062 unique features or words. Finally each vector was
normalized to unity length.

4 Experimental Results

Using the user vectors defined from the training dataset, a model of our algorithm
was trained. In order to evaluate the performance and due to the luck of any
test dataset, the initial train set was randomly divided into two equal subsets.
The first was used for training the model and the second for testing.

This training dataset contains 14,624 spam user vectors and 1,234 non spam
user vectors. The evaluation dataset contains 14,624 spam user vectors and 1,233
non spam user vectors.

After training the model and applying it to the evaluation data, it correctly
classified as spammers 14,403 users (TP, True Positives), correctly classified as
not spammers 884 users (TN, True Negatives), incorrectly classified as spammers
349 users (FP, False Positives) and incorrectly classified as not spammers 221
users (FN, False Negatives). This means a F1 measure of 98.06%. Using the
provided by the organizers of the challenge script for calculating the AUC value,
a 96.20% AUC value was estimated. Figure 3 shows the ROC curve generated
using the script we mentioned.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

 R
at

e

FP Rate

ROC curve

’roc_curve_points’ using 1:2

Fig. 3. ROC curve of the training set of the challenge

18

7

4.1 Test Dataset

The format of the test dataset was the same as the train dataset. After applying
the same processing as in the train dataset case, the test dataset consisted of
7,205 user vectors.

Training the model with the full train dataset (31,715 user vectors), and
applying it to the unlabelled test dataset, a list of the 7,205 users along with the
determined by the model confidence values was submitted to the challenge.

By the end of the challenge, the true user labels where known and we where
able to determine an AUC value of 97.96% and produced the ROC curve for the
test dataset shown in the figure 4 below.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

 R
at

e

FP Rate

ROC curve

’roc_curve_points’ using 1:2

Fig. 4. The ROC curve of the testing set of the challenge

For a comparison of our method, we ran the challenge task with SVMs [4]. As
it is reported in [5] the use of linear SVMs is both accurate and fast (to train and
to use), so SVM’s results were obtained using the SVMLight software package [6],
with the default parameter values and a default linear kernel. Using the above
mentioned script the AUC value was determined at 97.55%. We observe that
our method outperforms SVMs both in accuracy and efficiency. Although the
difference in performance is not significant, the training time of our algorithm
took half the time of that of SVMs (both methods, where executed on the same
machine). However the programming code of our algorithm in its current version
is not optimized, and a new version is under development which will dramatically
reduce the training time.

19

8

5 Concluding Remarks

In concluding, we have briefly described a novel algorithm for text categorization
that is accurate and fast and we have demonstrated its performance in the ECML
challenge of this year. The algorithm has been also tested on several standard
text collections and showed a robust and comparable or even better performance
compared with SVMs. As we have already mentioned the proposed algorithm
overcomes both drawbacks of SVMs both in the training complexity and memory
requirements. Definitely there are many details and extensions to the algorithm
which are currently under investigation and will be published in due course.

References

1. Joachims, T.: Text categorization with support vector machines: learning with many
relevant features (1998)

2. Rocchio, J.J.: Relevance feedback in information retrieval. In Salton, G., ed.: The
SMART retrieval system: experiments in automatic document processing. Prentice-
Hall, Englewood Cliffs, USA (1971) 313–323

3. Gkanogiannis, A., Kalampoukis, T.: An algorithm for text categorization. In: 31st
ACM International Conference on Research and Development in Information Re-
trieval SIGIR-2008. (2008) 869–870

4. Cristianini, N., Shawe-Taylor, J.: An Introduction To Support Vector Machines
(and other kernel-based learning methods). Cambridge University Press (2000)

5. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms
and representations for text categorization (1998)

6. Joachims, T.: Making large-scale support vector machine learning practical. In:
Advances in Kernel Methods: Support Vector Machines. (1998)

20

RANK for spam detection
ECML - Discovery Challenge

Vadis Consulting – J.-F. Chevalier & P. Gramme

Vadis Consulting SA/NV., Allée de la recherche/ Researchdreeft 65
1070 Brussels (Anderlecht), Belgium

www.vadis.com
bjfc@vadis.com, bpgr@vadis.com

Abstract. This submission is aimed to benchmark of Vadis methodology in the
context of spam detection. The work that has been done to provide these results can
be separated in two different tasks: data preparation and modelisation .

Keywords: Very large scale problem, LARS, Variable recoding, Ridge regression,
Features selection.

1 Introduction

Our approach can be summarized in four steps:
• Produce variables into a “single view”, containing one record per user ;
• Split the users into two segments, according to the type of content posted ;
• Bin variables and recode them according to the percentage of targets in each bin ;
• Apply LARS algorithm & backward cross-validation to perform linear regression on

these recoded variables.

The first and the most time consuming task was to derive variables from the initial files.
The un-homogeneity of the data led us to split it into two segments. Once we achieved this
goal, we used our generic tool to build models. After analysis and fine tuning, we ended up
with a model ready to be applied on the test set.

2 Data Preparation

The goal of data preparation is to build a number of variables describing each user. There is
practically no limitation in the number of variables created since our modelisation tool
RANK can cope with very large data set, with a very high number of columns.

Cleaning of text fields

The provided data included a number of fields consisting of text entered by the users: tags,
description of web pages or articles, etc. Before computing information, we performed
some cleaning of these fields:
• Put to lower case
• Remove special characters and count them

21

2 Vadis Consulting – J.-F. Chevalier & P. Gramme

• Cut tags into words (using spaces, hyphens and punctuation as separators)
• Try to correct typos: each tag is compared to the 1000 most popular tags. If it “close” to

any popular tag, it is replaced by that tag. Otherwise, it is left as is.
• Replace tag starting with a number by either “replace_of_year" or "replace_of_number”.

Measuring the information of text fields

The goal of this measure is to estimate the rarity of a document within a corpus. In this
case, the document is the value of some text variable for some user or resource, and the
corpus consists of all the values taken by this text variable for all users or resources.

The information of a text field is defined as the sum of the information of all its words.
The information of a single word is the inverse of its log-frequency – i.e. divide the total
number of words in the considered text field (across all users) by the total number of
occurrences of the word, and take the logarithm of the quotient.

Variables describing tags

Several variables were produced describing the tags posted by a user. These variables
concern the tag itself, not the resource pointed by the tag. They include among others
• The number of tags of a user which contain a given special character
• The total, average, minimum and maximum number of tags that the user posted per

resource
• The total, average, minimum and maximum length of the tags posted by a user
• The total, average, minimum and maximum information (see above) of the tags posted

by a user.

Manual aggregation of top words
The 1000 most frequent tags (after cleaning) were manually grouped into 10 categories.
These categories were afterwards used for computing some variables:
• The main category used by the user
• The total number of categories used
• The number and proportion of the user’s tags in each category
• The set of all categories used at least once by the user (appended in order to form a string

variable)

Variables describing resources

The resources (both URLs and BibTEX entries) pointed out by a user were described using
the following variables:
• The number of resources bookmarked by the user
• The information of different fields describing the resource (url, url_hash, description and

extended_description for bookmarks, and description for BibTEX entries). The per-user
sum, average, minimum and maximum information is then computed for every of those
fields.

22

RANK for spam detection
ECML - Discovery Challenge 3

3 Modelisation

Segmentation

Users can be divided into 3 segments: users with no BibTEX entry, users with no bookmark
entry, and users with both BibTEX and bookmarks. The following table shows the
proportion of spammers in each segment.

Has bookmark Has BibTEX Nb of users % spammers

1 0 30386 95.9 %

0 1 682 3.8 %

1 1 647 14.2 %

The strong differences in the proportion of targets shown in this table suggests to
separate users having BibTEX (and possibly bookmarks too) from users having no
BibTEX. We thus performed two different models.

Since our modelisation tool, RANK, expect to predict the modality which is less
represented, the prediction tasks were set up so as, for the BibTEX, predicting the
spammers, and for the non-BibTEX, prediction of the non-spammers.

RANK

RANK is a predictive modeling tool designed by analysts for the analyst. As a result, it
combines powerful techniques and modeling experience.

It is the first tool that automates many steps of the CRISP DM methodology
(http://www.crisp-dm.org/) for building models.

RANK is built to allow an analyst to quickly build models on huge data sets, and have
all elements to control the model choices and its quality, in order to focus his attention on
the most important part of the modeling process: data quality, overfitting, stability and
robustness. Using RANK, the analyst will get support for many modeling phases: audit,
variable recoding, variable selection, robustness improvement, result analysis and
industrialization.

Using ridge regression [2] on a linearized space, RANK combines the robustness of the
linear models and the performance of a tidily controlled non-linear approach.

Variable recoding

Non linear Recoding
The recoding of variables is an extremely important and time-consuming step in the
modeling process. Analysts know that the quality of a model can be heavily influenced by
this phase. This is why RANK has been extensively developed on this step to ensure best
model performance. RANK allows the user to specify which type of recoding he/she wants
to test, and RANK will just do it, and select the best recoding scheme for each variable.

The types of recoding are the following:

23

4 Vadis Consulting – J.-F. Chevalier & P. Gramme

• Nominal variables – Modalities will be converted to a numeric value that is related to its
relation with the target density. This recoding is known under the name "weight of
evidence recoding" [3]. Modalities can also be recoded using dummy variables.

• Numerical variable – There are two possibilities: simple normalization of the variables
or binning of the variable using a proprietary algorithm ('intelligent quantiles') and then
treated as nominal variables with order. The intelligent quantiles analyses the
distribution of a variable in order to identify most relevant quantiles, identifying 'plateau'
and jumps in the distribution. In this mode, jumps also produce dummy variables.

The recoding performed by RANK has two major effects:
• The first one is to get rid of the problem of non-normal distributions that should be a

basic assumption when using regression models. The recoding will remove the
dissymmetry and make the data more suitable for regression models.

• The second effect is that the recoding allows RANK to spot non-linear relationships of a
variable with the target, thus improving the expression power of the model.

Modality grouping
RANK automatically analyzes all variables along their cardinality. If a nominal variable has
many modalities, RANK will group them in a way that each grouped modality becomes
significant. For example, if Zip code with 30.000 modalities is used, only the modalities
that are significant will be left as they are. The others will be grouped in a default modality.
The grouping will preserve the order relationship in a variable if any. For example, for an
ordinal variable like 'number of sms sent', RANK will group only modalities that are
adjacent, and will possibly create many grouped modalities

Missing Values
RANK treats missing values in a very careful way. Depending on the type of variable,
RANK will recode missing values in a way such that its effect on the computed score is
null. This ensures that the model focuses only on relevant information for the prediction.

Variable selection

LARS Forward

When the number of variables is high (> 500), a first variable selection made using the
Least Angle Regression (LARS) [1]. LARS is an embedded technique which
simultaneously estimates the parameters of a linear regression and selects the most relevant
variables. It is only used here for variable selection as the regression coefficients will be re-
estimated later on using a ridge regression. In RANK, a variant of LARS called, LARS with
Lasso modification [1], is implemented. Interestingly, this method computes the parameters
of the Lasso regression, i.e. a linear regression with an upper bound on the L1 norm of the
vector of coefficients. Using the L1 norm enforces the sparseness of coefficients leading to
effective variable shrinkage. Importantly, the LARS procedure returns all the Lasso
solutions in a single run, i.e. the coefficients for any (positive) value of the upper bound. To
do so, LARS operates iteratively. At each iteration, a new variable is selected and a step is
taken in the direction equi-angular to the columns of the data matrix corresponding to the
currently selected variables. Doing so allows one to progressively minimize the residual
error of the model while spreading uniformly its variance over all the selected variables.
The algorithm is iterated until the relative residual error of consecutive iterations falls
below a user-defined threshold. Note that, even if LARS works in a forward fashion, it has

24

RANK for spam detection
ECML - Discovery Challenge 5

the ability to take backward steps by removing variables becoming useless at some stage.
The algorithm results in variables pre-selection that will, afterwards, be validated by the
backward pruning.

This mode can be applied on data sets involving more than 200.000 variables.

Lift optimized Backward
The backward pruning in RANK can either start with all the variables or with the pre-
selection returned by the LARS. In both cases, it iteratively eliminates variables when their
removal does not influence the quality of the prediction more than a prescribed threshold.

Using cross-validation, it will end with a variables selection that maximizes the area
under the lift curve.

Robust Regression

Ridge regression
The regression engine of RANK uses the so-called 'Ridge' regression [2]. This technology
allows improving the robustness of the models as well as improving the usage of nominal
variables with a lot of modalities, like zip codes.

Cross-Validation & Bootstrap
RANK extensively uses cross-validation technique when building a model: to assert which
recoding is best, to select best variables, and to evaluate the ridge regression constant. This
is extremely useful when the target density is very low, which is 90% the case in real life
projects like churn prediction (0.7 % per month), cross- and up-selling (0.3% of our clients
possess this product) or fraud detection (0.02% of all cases). Cross-validation and bootstrap
is not only relevant for building a robust model, it is also important for the analyst to
observe the volatility of the model quality.

Probability Estimation
The output of RANK is not just a score. It also gives for each record the best estimation of
the response probability, based on the model score function and the a priori probability of
the target in the data file.

4 Results

Selected variables

This section lists the top variables for each model. For some variables, it also contains
graphics showing the relation between the variable distribution and the target.

We usually rank the variables according to their importance. The importance is the loss (in
percentage) of lift quality that we observe if we remove the variable.

Model for BibTEX users
In this model, the target is spam user. We have 1,329 users and 118 target (8.88%). Our
model is composed of 53 variables; most of them are measuring information of a text field.

25

6 Vadis Consulting – J.-F. Chevalier & P. Gramme

Fig. 1. Most important variables: Top 15 for BibTEXusers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BIBT_Min_title_info

BIBT_Avg_title_info

TAG_Avg_tag_info

BOOK_Max_AvgContent_nof_tag_repetition

BOOK_Avg_url_info

BOOK_Min_Content_nof_tags

TAG_Avg_content_type

BIBT_Avg_description_info

TAG_Nof_Cat

BIBT_Avg_clean description_info

BOOK_Min_url_hash_info

BIBT_Percent_Main_Cat

BIBT_Basket_Cat

TAG_Max_Length

TAG_Percent_CatBU

…

• BIBT_Min_title_info: minimum information contained among the titles of the BibTEX
posted by the user.

BIBT_Min_title_info

0

50

100

150

200

250

300

v<=2.63 2.87<v<=3.23 3.91<v<=4.26

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

Frequency Fraction_of_Target

• BIBT_Avg_title_info: average information contained among the titles of the BibTEX
posted by the user.

26

RANK for spam detection
ECML - Discovery Challenge 7

BIBT_Avg_title_info

0

50

100

150

200

250

300

v<=3.25 3.44<v<=3.70 4.16<v
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Frequency Fraction_of_Target

• TAG_Avg_tag_info: average information contained among all the tags posted by the
user.

TAG_Avg_tag_info

0

50

100

150

200

250

300

v<=3.41 3.41<v<=3.71 3.71<v<=4.19 4.19<v<=4.59 4.59<v<=5.14 5.14<v
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Frequency Fraction_of_Target

Model for non-BibTEX users
For this model, a target is a non spam user. We have 30,386 users with no BibTEX, 1,256
of them are not spammer (4.13%). In our model, we end up with 70 variables. The figure
below shows the 15 most important variables.

27

8 Vadis Consulting – J.-F. Chevalier & P. Gramme

Fig. 2. Most important variables: Top 15 for non-BibTEXusers.

0 0.5 1 1.5 2 2.5 3 3.5

BOOK_nof_filled_ext_descr

TAG_Main_Cat

BOOK_Avg_extended description_info

BOOK_Max_url_info

TAG_BOOK_Nof_CatBU

TAG_Basket_Cat

BOOK_Nof_WithFlag_41

BOOK_Avg_description_info

TAG_Min_Nof_Tag_by_contentID

BOOK_Percent_CatHE

BOOK_Max_AvgContent_nof_tag_repetition

BOOK_Nof_WithFlag_47

BOOK_Min_Content_nof_tags

BOOK_Nof_WithFlag_62

TAG_Nof_CatLI

…

• BOOK_Nof_Filled_ext_desc. This first variable counts the number of filled
extended_description.

BOOK_nof_filled_ext_descr

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

v<=0 1<v<=2 3<v<=4 6<v<=8 10<v<=15 22<v<=34 53<v<=89 203<v
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Frequency Fraction_of_Target

• TAG_Main_Cat. This variable shows the main category of the user tags. The most
interesting categories are:

28

RANK for spam detection
ECML - Discovery Challenge 9

− Co = Computer (e.g.: software, program,...)
− Ne = News (e. g.: information, news,...)
− Ed = Education (e.g.: exercise, student,....)
− Li = Link word (e.g.: you, from,...)
− He = Health (e. g.: acne, treatment,...)
− Se = Sex (e. g.: lesbians, xxx,...)

TAG_Main_Cat

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Co Ne Ed We Mu Other Bu Sy En Li He Se

0.0%

3.0%

6.0%

9.0%

12.0%

15.0%

Frequency Fraction_of_Target

• BOOK_Avg_Extended_description_info: This computes the average information in
extended_description among all content ids of the user.

BOOK_Avg_extended description_info

1,700

1,750

1,800

1,850

1,900

1,950

2,000

2,050

2,100

UNKNOWN 3.02<v<=3.12 3.18<v<=3.24 3.30<v<=3.37 3.43<v<=3.51 3.58<v<=3.67 3.79<v<=4.01 4.59<v

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Frequency Fraction_of_Target

ROC curve

Training set

29

10 Vadis Consulting – J.-F. Chevalier & P. Gramme

The following figure shows the ROC curves achieved on the training set for the two models
(users with or without BibTEX), and for their combination. All these curves represent the
performance for spam users prediction, hence the probability of the non-BibTEX model has
been reverted. The area under the curve is 0.9792 for the BibTEX model, 0.9151 for the
NoBibTex model, and 0.9556 for the global model.

Fig. 3. ROC curve of the models on the build set. The dotted line represents the ROC curve of the
BibTEX users model, the dashed line represents the ROC for the non-BibTEX users model, and the
plain line shows the ROC we obtain when we combine the two models (global model).

Test set
Finally, the following pictures compares the performance of the model on the training

and test sets. For the test set , the area achieved under the ROC is 0.9703. This is higher
than the build! This is probably due to the fact that we have more BibTEX users in the test
set.

30

RANK for spam detection
ECML - Discovery Challenge 11

Fig. 4. ROC curve of the global model. The plain line represents the ROC curve on the build set
whereas the dotted line represents the ROC on the evaluation test set.

5 References
1. B. Efron, T. Hastie, I Johnstone and R. Tibshirani. Least Angle Regression, The Annals of

statistics 2004, Vol 32, No 2, 407-499.
2. Hoerl, A. E. and Kennard, R. (1970). Ridge regression: biased estimation for nonorthogonal

problems, Technometrics 12: 55-67.
3. Smith EP, Lipkovich I, Ye K. Weight of Evidence (WOE): Quantitative estimation of probability

of impact. Blacksburg, VA: Virginia Tech, Department of Statistics; 2002.

31

Naive Bayes Classifier Learning with Feature
Selection for Spam Detection in Social

Bookmarking

Chanju Kim and Kyu-Baek Hwang

School of Computing, Soongsil University, Seoul 156-743, Korea
cjkim@ml.ssu.ac.kr, kbhwang@ssu.ac.kr

Abstract. Social bookmarking systems such as BibSonomy and del.

icio.us have become increasingly popular with the prevalent use of in-
ternet. These systems provide powerful infrastructure solutions for se-
mantic annotation and information sharing, promoting diverse kinds of
internet-based activities, e.g., web exploration, creating and joining web-
based communities, and buying recently published volumes. This useful-
ness is also gaining the attention of malicious users a.k.a. spammers. For
instance, these spammers abuse social bookmarking systems for biasing
web search results and advertising improperly. Manual spam detection
is not scalable due to the vast amount of related information. In this pa-
per, we propose a machine learning-based approach to automatic spam
detection. In specific, a set of relevant features, i.e., the number of posts
and posted tags for each user are extracted from training data. The ex-
tracted tags are sorted by mutual information. Then, the tags, having
high mutual information value and used in test data, are chosen for the
classification task. In our experiments, naive Bayes classifiers with vary-
ing numbers of selected features were learned from a subset of the given
training dataset and evaluated on a separate validation set for finding
the optimal parameter setting. Finally, the learned results from the en-
tire training dataset with the best setting was applied to the real test
dataset for the challenge.

1 Introduction

The performance of social bookmarking systems [4] can be severely degraded by
malicious users, i.e., spammers. The spammers post irrelevant and misleading
information for their private benefit. The irrelevant and misleading information
in public repositories not only makes the repositories untrustful but also wasting
their resources in processing the vast amount of unnecessary information. Thus,
it is crucial to discriminate spamming from proper posting for the success of
social bookmarking systems.

Several challenges exist in this spam filtering problem. One is the enormous
amount of data. The number of users of a social bookmarking system usually
amounts to several tens of thousands. Also, the number of posts could amount
to several millions. To make matters worse, the given data for spam filtering

32

2

could be highly skewed. For instance, the ratio between spammers and active
users is about one to twelve in the given training dataset for the first task
of ECML PKDD Discovery Challenge 2008 (http://www.kde.cs.uni-kassel.
de/ws/rsdc08/). Another difficulty arises from the fact that the characteristics
of the spam filtering data are gradually changing as time goes by. In other words,
the distribution of a feature variable might be largely different according to the
time period over which it is estimated.

We addressed the above problems using naive Bayes classifiers learning with
an enhanced feature selection method. More specifically, tags for spam detection
are chosen based on their mutual information value as well as their usage in test
period. In our experiments, the suggested feature selection method was shown
to generally outperform the conventional feature selection method solely based
on mutual information.

The paper is organized as follows. In Section 2, we describe the given task
and explain the proposed method for tackling the problem. The experimental
results for parameter setting and the performance of the proposed approach on
the test dataset is given in Section 3. Finally, conclusions are drawn in Section 4.

2 The Method

The given task is to discriminate spammers from active-users (non-spammers)
based on their posting information such as the tags, the dates, the urls, the
descriptions, and the related information to the published volumes. The training
dataset consists of 31,715 users (including both spammers and active users) and
was gathered during the period from January 1989 through March 2008. Among
the 31,715 users, 2,467 are active users and the others are spammers. The dataset
is comprised of seven tables, i.e., tas, tas spam, bookmark, bookmark spam,
bibtex, bibtex spam, and user.

We formulated the given task as a supervised learning problem in which each
user corresponds to a data example and the target variable denotes whether the
user is spammer or not. As feature variables, the number of bookmark postings,
the number of bibtex postings, and the tags were deployed. Here, the tag variable
denotes whether a user have ever posted a specific tag or not.

Because there exist a tremendous amount of posted tags (more than 425,000),
an appropriate number of tags should be selected for avoiding the overfitting
problem and reducing the computational cost. We harnessed the mutual infor-
mation [1] for tag selection. The mutual information between a tag and the
target variable is calculated as follows.

I(Tagi;Target) =
tagi,target

P̂ (Tagi, Target) log
P̂ (Tagi, Target)

P̂ (Tagi) · P̂ (Target)
, (1)

where Tagi is a binary variable denoting whether the ith tag is used or not,
Target corresponds to the target variable, and P̂ (·) denotes the probability value
estimated from a given dataset. Here, the summation is taken over all possible
configurations of the two variables, Tagi and Target.

33

3

As a classifer, the naive Bayes classifier [5] was adopted because of its com-
putational efficiency as well as its optimality for classification tasks even when
the conditional independence assumption is invalid [2]. Actually, we have also
tried other famous classification methods including artificial neural networks,
support vector machines, tree-augmented naive Bayes classifiers, and decision
trees. Their performance in our problem setting was much worse than that of
the naive Bayes classifier although the experimental results are not shown here.
The naive Bayes classifier in our problem setting is simply formulated by the
following equation.

P (Target|F1, F2, ..., Fn) =
P (Target) · P (F1, F2, ..., Fn|Target)

P (F1, F2, ..., Fn)

=
P (Target) · P (F1|Target) · P (F2|Target) · ... · P (Fn|Target)

P (F1, F2, ..., Fn)
, (2)

where Fi corresponds to the ith feature variable. The feature variables include
Tagi defined as in Equation (1), the number of bookmark postings, and the
number of bibtex postings. Tagi’s are binary. Other two feature variables were
discretized by the supervised discretization method of Weka [6]. The method is
based on the approach proposed by [3].

One of the challenges in spam detection lies in the fact that the tag usage
pattern is continuously changing. For example, some tags chosen from a training
dataset by mutual information might not exist in a separate test dataset. In
this case, such tags cannot tell a test example is spammer or not because they
have never been used in the test dataset. To mitigate this problem, we propose
an enhanced feature selection method, considering both the mutual information
and whether the tag is used in the test period as follows.

1. Remove the tags which do not exist in the test dataset.

2. Select a pre-specified number of tags from the remaining tags according to
their mutual information values.

3 Experimental Evaluation

To evaluate the proposed approach and find the optimal parameter value1, we
reserved the data examples from the latest two months from the given training
dataset. Hence, the training period is from January 1989 to January 2008 and
the validation period is from February to March of the same year. The numbers
of postings during these periods are shown in Table 1. The numbers of spammers
and active users2 during the same periods are shown in Table 2.

In order to empirically find the optimal number of tags for classification, we
experimented with varying numbers of selected tags from 100 to 3,000. We also
1 Here, the parameter value denotes the number of tags.
2 It should be noted here that some users exist in both the training dataset and the

validation dataset.

34

4

Table 1. The number of postings in the given training dataset.

Non-spam Spam Total

Training period 260,271 1,264,539 1,524,820

Validation period 8,421 362,266 370,687

Total 268,692 1,626,805 1,895,497

Table 2. The number of users in the given training dataset.

Active users Spammers Total

Training period 2,466 29,248 31,714

Validation period 656 10,610 11,266

compared the conventional mutual information-based feature selection method
with the proposed one. The experimental results are shown in Fig. 1.

Fig. 1. Comparison of the feature selection methods with varying numbers of selected
tags. MI: the conventional method. MI + Test: the proposed method.

From the results, we can observe that the proposed method improves the
performance of naive Bayes classifiers in general. Also, the classification per-

35

5

Table 3. Comparison of the feature selection methods when the number of selected
tags is less than 1,000. MI: the conventional method. MI + Test: the proposed method.
Here, the performance is measured by the AUC.

of Tags 100 300 400 500 600 700

MI 0.95793 0.96709 0.96771 0.96769 0.96689 0.96445

MI + Test 0.95911 0.96580 0.96739 0.96775 0.96598 0.96590

formance decreases as the number of selected tags exceeds 1,000. One possible
explanation for this phenomenon is that the large number of selected tags causes
the overfitting problem. In fact, the number of extreme prediction values, i.e.,
zero and one, increases as the number of tags grows.

The detailed comparison of the feature selection methods when the number of
selected tags is less than 1,000 is given in Table 3. In this case, the classification
performance obtained by the proposed feature selection method is similar to that
by the conventional one. We conjecture that this is because the tags with very
high mutual information are not so much different in our training and validation
datasets.

We applied our spam detection method to predicting spammers in the final
test dataset. The final results are shown in Fig. 2.

Fig. 2. Classification performance of the proposed method on the real test dataset with
varying numbers of selected tags.

36

6

Interestingly, the optimal number of selected tags from Table 3 and Fig. 2
is the same. In both cases, the best classification performance was obtained by
considering 500 tags. The best result in Fig. 2 is 0.93899.

4 Conclusions

We described a machine learning-based approach for spam detection. As a clas-
sifier, the naive Bayes classifier was employed because of its simplicity and effi-
ciency. The number of bookmark postings, the number of bibtex postings, and
the tags were considered as feature variables for the classification. For the tag
selection, mutual information as well as the term’s usage in test period were
taken into account. The proposed feature selection method was shown to out-
perform the conventional mutual information-based approach in general. The
number of selected tags was empirically optimized through the validation ex-
periments. Through the experiments on the final test dataset, we have shown
that our empirical choice of the optimal number of selected tags from the train-
ing dataset was meaningful. One of the directions for future work would be to
combine the interrelationship between tags into our approach for more enhanced
classification performance.

Acknowledgements

This work was supported in part by the Seoul Development Institute through
Seoul R&BD Program (GS070167C093111) and in part by the Ministry of Knowl-
edge Economy of Korea through Ubiquitous Computing and Network (UCN)
Project (21st Century Frontier R&D Program).

References

1. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience
(1991)

2. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning 29(2/3), 103–130 (1997)

3. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: 13th International Joint Conference on Arti-
ficial Intelligence, pp. 1022–1027. (1993)

4. Heymann, P., Koutrika, G., Garcia-Molina, H.: Can social bookmarking improve
web search? In: First ACM International Conference on Web Search and Data Min-
ing. (2008)

5. Langley, P., Iba, W., Thompson, K.: An analysis of Bayesian classifiers. In: Tenth
National Conference on Artificial Intelligence, pp. 223–228. (1992)

6. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd Edition. Morgan Kaufmann, San Francisco (2005)

37

Using Co-occurence of Tags and Resources to
Identify Spammers

Ralf Krestel and Ling Chen

L3S Research Center
Universität Hannover, Germany

krestel|lchen@L3S.de

Abstract. Today, more and more social networking websites support
collaborative tagging, which allows users to annotate resources (e.g., video
clips, blog posts, and bookmarks) on the web. Due to its increasing pop-
ularity, however, spammers started to target this new type of service and
generate misleading tags either to increase the visibility of some resources
or simply to confuse users. Consequently, the performance of applications
built upon tag data, such as recovery and discovery of web resources, can
be limited. In this paper, we propose an algorithm to identify spammers
from the collaborating systems by employing a spam score propagating
technique. The three dimensional relationship among users, tags and web
resources is firstly represented by a graph structure. A set of seed nodes,
where each node represents a user, are then selected and assigned values
to indicate whether the corresponding users are spammers or not. The
initial values are propagated through the graph to infer the status of the
remaining users. Our experimental results demonstrate the effectiveness
of this approach in identify tag spammers.

1 Introduction

With the recent rise of Web 2.0 technologies, many social media applications
like Flickr, Del.ici.ous, and Last.fm provide features which allow users to assign
tags [1] to a piece of information such as a picture, blog entry, video clip etc.
Web users from different backgrounds tag (annotate) resources on the Web at an
incredible speed, which results in large volume of tag data obtainable from the
Web today. The hidden value of tag data has been explored in many applications.
For example, Tso-Sutter et al [2] incorporated tags into collaborative filtering
algorithms to enhance recommendation accuracy. In [3], the authors discussed
using tags to lighten the limitation of the amount and quality of anchor text
to improve enterprise search. The usage of tags in Web search has also been
investigated in Bao et al [4].

One notable reason which supports the increasing popularity of collaborative
tagging is that users are permitted to enter tags without any constraints. Con-
sequently, spammers can easily take advantage of this new service to generate

38

2

misleading tags to increase the visibility of some resources or simply to confuse
users. Therefore, identifying spammers from collaborating systems is an impor-
tant problem so that top-quality tag data can be generated by removing those
supplied by spammers. Some research effort has been exerted to target this prob-
lem. For example, Koutrika et al [5] proposed to combat tag spam by ranking
the results returned from a query tag, based on the co-occurrence frequency be-
tween the tag and each resource. Their approach is specially designed for tag
based search, while our research objective is more general so that the results can
be used in not only tag based search but also other applications of collaborative
systems.

In our approach, we firstly construct a graph which models users as nodes and
three types of relationship between users as edges. Particularly, we consider the
following types of relationship between users: common tags supplied by users,
common resources annotated by users and common tag-resource pairs used by
users. We then select a set of seed nodes whose corresponding users are man-
ually assessed as spammers or not. The identity of the remaining nodes/users
are computed by propagating the status of seed nodes through the graph. The
effectiveness of our approach is demonstrated on the bibsonomy data set1.

The rest of this paper is organized as follows. We discuss the background
knowledge by reviewing related work in Section 2. In Section 3, we describe
the approach which propagates the identity of seed users through the graph.
The evaluation results conducted on the bibsonomy data set are presented and
analyzed in Section 4. Finally, Section 5 concludes this paper with some summary
remarks and future work discussions.

2 Related Work

In this section, we review related work in two areas, collaborative tagging systems
and spam detection.

A collaborative tagging system allows users of a web site to freely attach to
a particular resource arbitrary tags which, in the opinion of the user, are some-
how associated with the resource in question. The commonly noted structure of
collaborative filtering systems is a tripartite model consisting of users, tags and
resources. This model is developed as a theoretical extension of the bipartite
structure of ontologies with an added “social dimension” in [6]. The dynamics of
collaborative systems are examined in [7] using the tag data at the bookmarking
site Del.ici.ous. According to this work, tag distributions tend to stabilize over
time. Halpin et al. confirm these results in [8] and show additionally that tags
follow a power law distribution. Considering the structure and stable dynamics
of collaborative tagging systems, it seems likely that tag data would be a reliable
source of semantic information reflecting the cultural consensus of a particular
system’s users. As a result, various applications of tag data have been researched.
Mika [6] investigates the automatic extraction of ontological relationships from

1 http://www.kde.cs.uni-kassel.de/ws/rsdc08/dataset.html

39

3

tag data and proposes the use of such emergent ontologies to improve currently
existing ontologies which are less capable of responding to ontological evolution.
Dmitriev et al. [3] explore the use of “annotations” for enterprise search to com-
pensate for the lack of sufficient anchor text in intranet environments. In [4],
tag data is exploited for the purpose of web search through the use of two tag
based algorithms: one exploiting similarity between tag data and search queries,
and the other utilizes tagging frequencies to determine the quality of web pages.
Tso et al [2] incorporate the tag data into the collaborative filtering systems.
Berendt and Hanser [9] demonstrate the benefits of using tag data for weblog
classification by treating it as content instead of meta data. For searching and
ranking within tagging systems, A. Hotho et al [10] propose the FolkRank algo-
rithm which extends the seminal PageRank approach. In particular, they model
the structure of the folksonomy as a graph, where nodes represent users, tags
and resources, and edges represent the assignment relationship between users
and tags, users and resources, tags and resources.

Everywhere in the internet where information is exchanged, malicious indi-
viduals try to take advantage of the information exchange structure and use it
for their own benefit. The largest amount of spam and historically the first field
where spam was generated is the electronic communication system (e-mail). Af-
terwards, various internet applications were attacked by spammers such as search
engine spam, blog spam, wiki spam etc, which triggered numerous research ef-
forts in spam combating. For example, TrustRank [11] separates spam pages
from non-spam pages based on the intuition that trustworthy pages usually link
to also trustworthy pages and so on. They select a seed set of highly trusted
pages first and then propagate the trust score of seed pages by following the
links from these pages through the Web. A survey of approaches fighting spam
on social web sites can be found in [12]. Comparing to spam detection from other
web applications, studies on detecting spam from collaborative tagging systems
are very limited. Koutrika et al [5] propose to combat spam in the particular sit-
uation when users query for resources annotated with certain tags. Their method
ranks a resource higher if more users annotated it with the queried tags, based
on the assumption that tag spam may not be used by the majority. As men-
tioned before, our work is different in the way that our approach is not designed
for a particular application. Consequently, the output of our algorithm — a set
of identified tag spammers — can be used by any application based on tags. Xu
et al [13] assign authority scores to users, and measure the goodness of each tag
with respect to a resource by the sum of the authority scores of all users who
have tagged the resource with the tag. Then, the authority scores of users are
computed via an iterative algorithm similar to HITs [14]. Contrasting to their
approach which iteratively computes authority scores for users and tag-resource
pairs, we iteratively update scores for users only. Moreover, our approach is
more flexible in the way that multiple relationship, such as co-tag, co-resource
and co-tag-resource, can be taken into account, rather than considering only the
tag-resource pairs shared by users.

40

4

3 Finding Malicious Users

Identifying malicious users (spammers) in a tagging environment with thousands
of participants and millions of tag assignments can be done by exploiting the wis-
dom of the crowds [15]. If many known spammers use a certain tag for a certain
resource, it might indicate that other users having the same tag assignment are
also spammers. In our approach we use an algorithm similar to TrustRank [11] to
propagate a spammer score through a graph with each node representing a user.
As in TrustRank, we need a set of seed nodes which were manually assessed. For
the competition, the training data was used as the seed set.

3.1 Problem Specification

Let U be a set of users of a collaborating system, T be a set of tags, and R be
a set of resources. We define the functions getT (u) and getR(u) to retrieve the
set of tags and resources assigned by user u respectively. In addition, we define
the function getTR(u) to return the set of tag-resource pairs used by user u. For
example, getTR(u) = {tmrn} indicates that the user u assigned the tag tm to
the resource rn.

Our goal is to find a function S(ui), ui ∈ U , which assigns a score to each
user ui such that the higher the value of S(ui), the higher the probability that
ui is a spammer. The value of S(ui) ranges in [−1, 1] (the reason why negative
values are involved will be explained later in Section ??).

3.2 Tagging System Model

Given a set of data including users U , tags T and resources R, we model the
data as a bidirected weighted graph G = {V, E}, where V is a set of vertices with
each v ∈ V represents a u ∈ U . E is a set of edges such that each edge (vi, vj)
indicates that the two corresponding users ui and uj used at least one common
tag or resource. That is, |getR(ui) ∩ getR(uj) ∪ getT (ui) ∩ getT (uj)| ≥ 1.

Additionally, we associate a weight to each edge so that the weight of an edge
depends on the number of shared tags and resources of the end nodes of the edge:
W (vi, vj) = W (ui, uj) = (|getT (ui)∩ getT (uj)|×Wt)+ (|getR(ui)∩ getR(uj)|×
Wr)+(|getTR(ui)∩getTR(uj)|×Wtr). Wi, i ∈ {r, t, tr} represent static weighting
factors to pay tribute to the different degrees of proximity depending on whether
they are sharing the same tags t, resources r or even the same tag assignments
tr.

In Figure 1 (a), we present a very simple tagging scenario: Suppose we have
three users U = {u1, u2, u3}, three different tags T = {t1, t2, t3} and two re-
sources R = {r1, r2}. Each user has annotated the resources with certain tags.
For example, the leftmost link in Figure 1 (a) indicates that both users u1 and
u2 have supplied the tag t1 with the resource r1. Based on the tag assignments in
this figure, the corresponding data model can be created as Figure 1 (b). Three
nodes, representing the three users, are connected with each other according

41

5

r1 r2

t1 t2 t3

u1,u2

u1u2 u2

u1,u3
u3

(a) A tagging scenario (b) A data model

u1

u2 u3

getT(u1) = {t1,t2}
getR(u1) = {r1,r2}
getTR(u1) = {t1r1,t2r1,t1r2}

getT(u2) = {t1,t2,t3}
getR(u2) = {r1}
getTR(u2) = {t1r1,t2r1,t3r1}

getT(u3) = {t1,t3}
getR(u3) = {r2}
getTR(u3) = {t1r2,t3r2}

W(u1,u2) = Wt*2
+Wr*1+Wtr*2

Fig. 1. A tagging scenario and its data model

to common tags/resources/tag-resources pairs. The results of the three func-
tions related to a user, getT (ui), getR(ui), getTR(ui), are shown in the figure
as well. Then, based on the tags, resources, and tag-resources used by a user,
the weight of an edge connecting two users can be computed. For example, as
shown in the figure, the weight of the edge between u1 and u3 is calculated as
W (u1, u2) = Wt ∗ 2 + Wr ∗ 1 + Wtr ∗ 2, since the two users shared two tags, one
resource and two tag-resource pairs.

Based on this graph model, we introduce a right stochastic transition matrix
T , which is defined as:

T (i, j) =
0 if (vi, vj) �∈ E

W (vi,vj)P
vk∈V W (vi,vk) if (vi, vj) ∈ E

Suppose Wt, Wr and Wtr are set as 1. Figure 2 shows the adjacency matrix
and the transition matrix for the example in Figure 1. Note that, the adjacency
matrix is symmetric since the graph model is bidirected, while the transition
matrix is asymmetric.

v1 v2 v3

v1 5 3

v2 5 2

v3 3 2

T =

0
@

0 5
8

3
8

5
7

0 2
7

3
5

2
5

0

1
A

Fig. 2. Adjacency (left) and transition (right) matrixes of the example in Figure 1.

42

6

3.3 Spammer Score Propagation

In our approach, the spammer score for each user, S(u), is computed similarly to
TrustRank [11], which itself is based on PageRank [16]. The TrustRank employs
the formula as follows:

t-ranki+1 = α · T · t-ranki + (1 − α) · d, (1)

with transition matrix T , a weighting factor α and the manually assessed seed
vector d. We use this formula to propagate initial spammer scores of seed users
through the graph. In addition to TrustRank which propagates only trust in-
formation, we adopt the distrust propagation idea described in [17] to allow the
propagation of scores for not only good users but also explicitly bad users (spam-
mers). Consequently, we extend the manual seed set assessment to include both
good users and spammers. We populate the initial vector d with:

d(ui) =
O(ui) if ui ∈ SEED

0 if ui �∈ SEED
(2)

where O(ui) ∈ {−1, 0, 1} is the oracle function which assigns initial score 1 to
non-spammers, −1 to spammers and 0 to the rest. SEED ⊆ U is a set of seed
nodes, which for the competition was the provided set users in the training data.

Consider the running example shown in Figures 1 and 2, the results of our
approach (i.e. spammer score for each user) after 10 iterations are shown in
Figure 3, where v1 and v3 are selected as seed nodes and the decay factor α is
set as 0.5.

spammer-scorei+1 = 0.5 ·
0
@

0 5
8

3
8

5
7

0 2
7

3
5

2
5

0

1
A · spammer-scorei + (1 − 0.5) ·

0
@

1

0

−1

1
A

i = 10 v1 v2 v3

spammer-score(vx) 0.38621816 -0.42241633 0.03619808

Fig. 3. Spammer score computation and results for the example in Figure 1.

4 Evaluation

Evaluation was performed on the competition’s data set. Due to the time con-
strains, we were not able to do extensive evaluation, investigating the results for
different parameter settings, or do an in-depth analysis of the submitted results.
Since we were only allowed to submit one run, we will try to provide more results
for the final paper.

43

7

4.1 Data Set

The data set comes from bibsonomy2 and was manually extended with spammer
information3. Table 1 shows the properties of the provided training and test data
set. The data consists mainly of tagged bookmarks rather than tagged bibtex
entries (2%) and bookmark tag assignments are more likely to be spam compared
to bibtex tag assignments (90.229% vs. 0.264% in the training data).

Table 1. Training and test data sets

Training Data Set Test Data Set
Users 31,715 7,205

Spammers 29,248 7,034

Tag Assignments 14,074,725 2,743,743

Tag Assignments
13,258,759 2,612,634

from Spammers

4.2 Results

We evaluated different configurations. Firstly, we only considered co-occurence
of tag-resource pairs between users. That means, only if two users assigned the
same tag to a certain resource we created an edge in the graph for these two
users. Secondly, we added resource co-occurence edges to the graph. Still ongoing
are evaluations for other configurations like including tag co-occurence between
users. The confusion matrices for the first two configurations can be seen in
Table 2.

Table 2. Confusion matrices for different configurations

Only Tag-Resource Pairs Co-occurence

True Positives: 6085 True Negatives 13
False Positives: 158 False Neagatives 949

Tag-Resource Pairs and Resources Co-occurence

True Positives: 6202 True Negatives 2
False Positives: 169 False Neagatives 832

Table 3 shows accuracy and ROC AUC values. Since we only assigned
boolean values to users the ROC curve is not very interesting and we ommit
it here.
2 http://www.bibsonomy.org
3 http://www.kde.cs.uni-kassel.de/ws/rsdc08/dataset.html

44

8

Table 3. Accuracy and ROC AUC for different configurations

Strategy Accuracy ROC AUC
Tag-Resource Pairs 86.11% 0.4469

T-R Pairs, Resources 84.64% 0.4707

5 Conclusions and Future Work

In this paper, we mainly describe an approach to identify spammers from collab-
orative tagging systems. The basic idea follows the seminal PageRank approach.
The specific feature which distinguishes our approach from existing work is the
data structure we employ. In particular, we explicitly model users of collabo-
rative systems as nodes in a graph, since our objective is to detect suspicious
spammers. An edge is then created between two users if they co-used a resource,
a tag and/or a tag-resource pair. After manually assessing a set of seed users, the
scores indicating whether they are spammers or not are propagated through the
graph. The intuitive is that nonspammers may annotate resources with similar
tags, while spammers may have similar interests in particular resources and/or
tags. Consequently, as another feature of our approach, we propagate the scores
of not only nonspammers but also spammers. The experimental results on the
challenge data demonstrate the effectiveness of our approach.

For future work we want to combine our link-based algorithm with a content-
based approach. The benefits could be twofold: Firstly we could use the content-
based approach to automatically generate the seed set, and secondly we could
adjust the weights for propagation based on the content analysis. To improve our
link-based algorithm we try to find more connections between users to minimize
the number of unreachable partitions in the graph. The assignments of prob-
abilities to users instead of boolean values could also comprise some potential
for improvement. For real world applications, the question of seed set selection
poses another interesting task which needs to be solved.

6 Acknowledgements

This work is supported by the EU project IST 45035 - Platform for searcH of
Audiovisual Resources across Online Spaces (PHAROS).

References

1. Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy,
flickr, academic article, to read. In Wiil, U.K., Nürnberg, P.J., Rubart, J., eds.:
Hypertext, ACM (2006) 31–40

2. Tso-Sutter, K.H.L., Marinho, L.B., Schmidt-Thieme, L.: Tag-aware recommender
systems by fusion of collaborative filtering algorithms. In Wainwright, R.L., Had-
dad, H., eds.: SAC, ACM (2008) 1995–1999

45

9

3. Dmitriev, P.A., Eiron, N., Fontoura, M., Shekita, E.J.: Using annotations in en-
terprise search. In Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M.,
eds.: WWW, ACM (2006) 811–817

4. Bao, S., Xue, G.R., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using
social annotations. [18] 501–510

5. Koutrika, G., Effendi, F., Gyöngyi, Z., Heymann, P., Garcia-Molina, H.: Combating
spam in tagging systems. In: AIRWeb. (2007)

6. Mika, P.: Ontologies are us: A unified model of social networks and semantics. In
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A., eds.: International Semantic
Web Conference. Volume 3729 of Lecture Notes in Computer Science., Springer
(2005) 522–536

7. Golder, S.A., Huberman, B.A.: The structure of collaborative tagging systems.
CoRR abs/cs/0508082 (2005)

8. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tag-
ging. [18] 211–220

9. Berendt, B., Hanser, C.: Tags are not metadata, but just more content - to some
people. In: ICWSM. (2007)

10. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folk-
sonomies: Search and ranking. In Sure, Y., Domingue, J., eds.: ESWC. Volume
4011 of Lecture Notes in Computer Science., Springer (2006) 411–426

11. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.O.: Combating web spam with
trustrank. In Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley,
J.A., Schiefer, K.B., eds.: VLDB, Morgan Kaufmann (2004) 576–587

12. Heymann, P., Koutrika, G., Garcia-Molina, H.: Fighting spam on social web sites:
A survey of approaches and future challenges. IEEE Internet Computing 11(6)
(2007) 36–45

13. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag
suggestions. In: WWW2006: Proceedings of the Collaborative Web Tagging Work-
shop, Edinburgh, Scotland (2006)

14. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
46(5) (1999) 604–632

15. Surowiecki, J.: The Wisdom of Crowds. Anchor (August 2005)
16. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

Bringing order to the web. techreport (1998)
17. Wu, B., Goel, V., Davison, B.D.: Propagating trust and distrust to demote web

spam. In Finin, T., Kagal, L., Olmedilla, D., eds.: MTW. Volume 190 of CEUR
Workshop Proceedings., CEUR-WS.org (2006)

18. Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J., eds.: Pro-
ceedings of the 16th International Conference on World Wide Web, WWW 2007,
Banff, Alberta, Canada, May 8-12, 2007. In Williamson, C.L., Zurko, M.E., Patel-
Schneider, P.F., Shenoy, P.J., eds.: WWW, ACM (2007)

46

Combining Clustering with Classification
for Spam Detection in

Social Bookmarking Systems

Antonia Kyriakopoulou and Theodore Kalamboukis

Department of Informatics,
Athens University of Economics and Business,

76 Patission St., Athens, GR 104.34
{tonia.tzk}@aueb.gr

http://pages.cs.aueb.gr/ipl/ir/

Abstract. This paper addresses the problem of learning to classify texts
by exploiting information derived from both training and testing sets. To
accomplish this, clustering is used as a complementary step to text classi-
fication, and is applied not only to the training set but also to the testing
set. This approach allows us to study the location of the testing examples
and the structure of the whole dataset, which is not possible for an induc-
tive learner. The incorporation of this knowledge to the feature represen-
tation of the texts is expected to boost the performance of a SVM/TSVM
classifier. Experiments conducted on tasks and datasets provided in the
framework of the ECML/PKDD 2008 Challenge Discovery on spam de-
tection on social bookmarking systems, demonstrate the effectiveness of
our approach. The experiments show substantial improvements on clas-
sification performance.

Key words: classification, clustering, spam detection

1 Introduction

Text classification and clustering have been the focus of critical research in the
areas of machine learning and artificial intelligence. In the literature, these two
streams flow independently of each other, despite their akin close conceptual
and practical relations. However, there are several important research issues
encapsulated into text classification tasks and the role of clustering in support
of these tasks is also of great significance.

A standard research issue for text classification is the creation of compact rep-
resentations of the feature space and the discovery of the complex relationships
that exist between features, documents and classes. In this vein, an important
area of research where clustering is used to aid text classification is the area
of dimensionality reduction. Clustering is used as a feature compression and/or
extraction method : features are clustered into groups based on selected cluster-
ing criteria. Feature clustering methods create new, reduced-size event spaces by
joining similar features into groups. They define a similarity measure between

47

2 Antonia Kyriakopoulou, Theodore Kalamboukis

features, and collapse similar features into single events that no longer distin-
guish among their constituent features. Typically, the parameters of the cluster
become the weighted average of the parameters of its constituent features. Two
types of clustering have been identified: i) one-way clustering, i.e. feature clus-
tering based on the distributions of features in the documents or classes [2],[16]
and ii) co-clustering, i.e. clustering both features and documents [4].

A second research area of text classification where clustering has a lot to
offer, is the area of semi-supervised learning. Training data contain both labelled
and unlabelled examples. Obtaining a fully labelled training set is a difficult
task; labelling is usually done using human expertise, which is expensive, time
consuming, and error prone. Obtaining unlabelled data is much easier since it
involves collecting data that are known to belong to one of the classes without
having to label them. Clustering is used as a method to extract information
from the unlabelled data in order to boost the classification task. In particularly,
clustering is used: i) to create a training set from the unlabelled data [5], ii) to
augment the training set with new documents from the unlabelled data [18], [19],
iii) to augment the dataset with new features [13], [9], [10], and iv) to co-train a
classifier [14], [11].

Finally, clustering in large-scale classification problems is another major re-
search area in text classification. A considerable amount of work is done on using
clustering to reduce the training time of a classifier when dealing with large data
sets. In particular, while SVM classifiers (see [3] for a tutorial) have proved to be
a great success in many areas, their training time is at least O(N2) for training
data of size N , which makes them non favourable for large data sets. The same
problem applies to other classifiers as well. In this vein, clustering is used as a
down-sampling pre-process to classification, in order to reduce the size of the
training set resulting in a reduced dimensionality and a smaller, less complex
classification problem, easier and quicker to solve [17], [1]. However, it should
be noted that dimensionality reduction is not accomplished directly using clus-
tering as a feature reduction technique as discussed earlier, but rather in an
indirect way through the removal of training examples that are most probably
not useful to the classification task and the selection of the most representative
redundant training set. In most of the cases this involves the collaboration of
both clustering and classification techniques.

For a detailed review and interpretation of the role of clustering in different
fields of text classification see [12].

In this paper, we deal with the text classification aided by clustering sce-
nario and apply it to the problem of spam detection in social resource sharing
systems. Social resource sharing systems are web–based systems that allow users
to upload their resources, and to label them with arbitrary words, so–called tags.
The systems can be distinguished according to what kind of resources are sup-
ported. The system under investigation is called BibSonomy1 and it is a social
bookmark and publication sharing system that allows sharing bookmarks and

1 http://www.bibsonomy.org

48

Combining Clustering with Classification 3

BibTex entries simultaneously. A formal description of the underlying structure
which is called folksonomy is given in [7].

The paper is organized as follows: next section presents the algorithm. Section
3 presents the empirical evaluation. We conclude by pointing out open issues and
limitations of the algorithm presented.

2 The Algorithm–Using Clustering For Text
Classification

Consider a k–class categorization problem, (k = 1 in the case of spam de-
tection on social bookmarking systems), with a labeled training sample Tr =
{(x1, y1) , . . . , (xl, yl)} of feature vectors x ∈ Rn and corresponding labels yi ∈
{1, . . . , k}, and an unlabeled testing sample Te = x∗

1, . . . ,x∗
m of feature vec-

tors. The features are valued using the TF*IDF weighting scheme [15], defined
by

W (fi) = TF (fi,x) ∗ IDF (fi) (1)

where the term frequency of feature fi, TF (fi, x), is the number of its oc-
curences in document x, the inverse document frequency is

IDF (fi) = log2

|D|
DF (fi)

(2)

where |D| = |Tr ∪ Te| is the number of documents in the dataset, and the
document frequency, DF (fi), is the number of documents that contain fi at least
ones. All feature vectors are normalized to unit length.

The algorithm consists of the following three steps:

– Clustering step: to cluster both the training and testing set.
– Expansion step: to augment the dataset with meta–features originated from

the clustering step.
– Classification step: to train a classifier with the expanded dataset.

2.1 Clustering Step

For the clustering step of the algorithm, we need to define the desired number
of clusters into which the dataset should be clustered. Results from experiments
[10] conducted on three widely used corpora (Reuters, 20Newsgroup, and We-
bKB) have shown an increase of performance of classification when the number
of clusters is equal to the number of the predefined classes. In traditional classi-
fication tasks it can be assumed that the classes correspond to topics, and there
is a one-to-one correspondence between the topic and the class under which the
data are classified. Moreover, the examples of a class are clustered together which
is logical since they share the same word distribution. So we can assume that
there is a one-to-one correspondence between classes, topics and clusters, and

49

4 Antonia Kyriakopoulou, Theodore Kalamboukis

use this information to define the desired number of clusters. In spam detection
on social bookmarking systems we can’t make such safe assumptions. Spam user
posts can deal with many different topics, there is a one-to-many correspondence
between the class spam and the topics of the posts that fall under it. So, the
number of topics can’t be determined beforehand. Hense, the number of clus-
ters to select is two: one cluster with the spam posts and one cluster with the
non-spam.

The CLUTOTM Clustering Toolkit [8] is used and a divisive clustering al-
gorithm with repeated bisections is selected for clustering both the training and
testing sets. In this method, the disired k–way clustering solution is computed
by performing a sequence of k − 1 repeated bisections. The dataset is first clus-
tered into two groups, then one of these groups is selected and disected further.
This process continuous until the desired k number of clusters is found. During
each step, the cluster is bisected so that the resulting k–way clustering solution
optimizes the internal criterion function

max
k

g=1 u,v∈Sg

sim(u, v) (3)

where Sg is the set of documents assigned to the gth cluster, u and v represent
two documents, and sim(u, v) is the similarity between two documents. The
generated set of clusters G = {G1, G2, . . . , Gk} consists of k non–overlapping
clusters.

2.2 Expansion Step

In the expansion step, each cluster in G contributes one meta–feature to the
feature space of the training and testing sets, i.e. k meta–features are created.
The weight of these meta–features is computed applying the TF*IDF weighting
scheme to the clusters. We consider that all the documents in a cluster Gj

share the same meta–feature mfj whose frequency within a document x of the
cluster equals to one, TF (mfj ,x) = 1, its document frequency equals to the
size of the cluster, DF (mfj) = |Gj |, and its inverse document frequency is

IDF (mfj) = log2
|D|
|Gj | . Then by properly adjusting Equation 1 the weight of

mfj is defined by

W (mfj) = log2

|D|
|Gj |

(4)

2.3 Classification Step

Finally, in the classification step the SVMlight implementation of SVMs and
TSVMs is used. A binary classifier is constructed for the expanded dataset, a
linear kernel is used and the weight C of the slack variables is set to default.

50

Combining Clustering with Classification 5

3 A Performance Study

3.1 Experiment Settings

The empirical evaluation is done in two tasks created and published in the frame-
work of ECML/PKDD 2008 Discovery Challenge2.

– Task A deals with spam detection in social bookmarking systems. The goal
of this task is to learn a model which predicts whether a user is a spammer
or not. In order to detect spammers as early as possible, the model should
make good predictions for a user when he submits his first post.

– In Task B the aim is to support the user during the tagging process and to
facilitate the tagging. BibSonomy includes a tag recommender. This means
that when a user finds an interesting bibtex or bookmark and posts it to
BibSonomy, the system offers up to ten recommended tags on the posting
page. The goal is to learn a model which effectively predicts the tags a user
will use to describe his post.

The dataset provided consists of data, in the form of posts, collected from
2.638 active non-spam users and 36.282 spam users by manually labeling spam-
mers and non–spammers. It was devided in a training set which was provided at
the beginning of the competition, and a testing set which was released 48 hours
before the deadline. Users’ posts are either bibtex or bookmarks. They include
all public information such as the url, the description, the title and the user
defined tags.

The evaluation criterion prescribed by the competition is the AUC value.

3.2 Results

Several experiments were conducted during the contest on the given training set
as well as after the publication of the true classification labels of the testing set. In
this paper only the results from experiments on the whole dataset are presented.
In all the experiments, the given dataset was pre-processed as follows. First, for
each user, all his posts, BibTex and bookmarks, were considered as one record
(feature vector), i.e. there were no multiple records per user as in the original
dataset. Then, different versions of this dataset were created. One containing
all public information including tags and urls, a second containing all public
information except from tags and urls, a third without the tags, and a fourth
without the urls. The reason for the different versions created was to examine
the impact of using tags and urls in the spam detection process. As stated in
[6] tags are considered as one of the ways that a spam user can use to corrupt a
bookmarking system. The more often a web page is submitted and tagged, the
better chance it has of being found. Spam users bookmark the same web page
multiple times and tag each page of their web site using a lot of popular tags.

2 Additional information can be found in http://www.kde.cs.uni-kassel.de/ws/rsdc08/

51

6 Antonia Kyriakopoulou, Theodore Kalamboukis

According to this fact, we can hypothesize that a url is a serious indicator of a
spam user, whereas a tag is a deceptive one.

Also, we wanted to examine the effect of applying stemming and stopword
removal mechanisms to the dataset. A series of experiments was conducted in
this basis too. It should be noted that numbers, words with length less than two
and punctuation marks where discarded for all datasets. Finally, the TF*IDF
weighting scheme is applied and all users’ vectors are normalized to unit length.

The following experiment scenarios were conducted:

– case1 : the dataset is used without the tags and urls, whereas stemming and
stopword removal are applied .

– case2 : the dataset is used without the tags and urls, and stemming and
stopword removal are not applied.

– case3 : the dataset is used with the tags and urls, and stemming and stopword
removal are applied.

– case4 : the dataset is used with the tags and urls, whereas stemming and
stopword removal are not applied.

– case5 : the dataset is used without the tags, with the urls, whereas stemming
and stopword removal are applied.

– case6 : the dataset is used without the tags, with the urls, and stemming and
stopword removal are not applied.

– case7 : the dataset is used with the tags, without the urls, whereas stemming
and stopword removal are applied.

– case8 : the dataset is used with the tags, without the urls, and stemming and
stopword removal are not applied.

We applied our algorithm only on Task A. The results of these experiments
are presented in Table 1. To provide a baseline for comparison, results from the
standard SVM and transductive SVM (TSVM) classifiers are also presented. C-
SVM and C-TSVM correspond to the perfomance of an SVM/TSVM classifier
when it is used in conjuction with clustering according to our algorithm.

Table 1. Results for Task A.

SVM C-SVM TSVM C-TSVM

Case1 82.03 82.72 89.15 89.17

Case2 82.33 82.92 89.76 90.10

Case3 84.68 85.86 93.34 93.64

Case4 85.26 86.42 93.04 94.54

Case5 84.79 85.61 90.05 92.95

Case6 85.00 86.28 90.93 91.84

Case7 84.69 85.54 90.02 92.44

Case8 83.77 83.78 90.04 91.65

First of all, we can see that the C-SVM and C-TSVM classifiers perform
better than the standard SVM and TSVM classifiers. In all cases, the C-TSVM

52

Combining Clustering with Classification 7

classifier has the best performance over the rest of the classifiers. The best result
of 94.54% is obtained when the tags and urls are both included in the dataset and
stemming and stopword removal are not applied (case 4). In almost all cases,
the application of stemming and stopword removal deteriorates performance.
The inclusion or not of tags and urls in the dataset also affects performance.
When tags and urls are both included in the dataset as in cases 3 and 4, the
classification performance is higher in contrast with the cases 1 and 2 where tags
and urls are excluded. Also, when tags and urls are used in turn as in cases 5 to
8, we can see that the performance is better when urls are used whereas tags are
not used in the dataset. The results confirm the original hypothesis that stated
that a url is a serious indicator of a spam user, whereas a tag is a deceptive one.

4 Conclusions

We presented empirical results on datasets given in the framework of the ECML/
PKDD Discovery Challenge 2008 on spam detection in social bookmarking sys-
tems. On all experiments conducted, the clustering approach combined with
a SVM/ TSVM classifier showed improvements over the use of a standard
SVM/TSVM classifier on its own. The applycation of stemming and stopword
removal mechanisms, revealed a deterioration in performance and their use is
not encouraged in this context. Also, the results confirm the hypothesis that
urls can be considered as a serious indicator of spam users, whereas tags can be
deceptive.

One limitation of our algorithm is that when a new user makes his first
post, the same procedure of clustering, meta–feature addition, and classifica-
tion, should be applied again for the whole dataset, a rather time consuming,
and computationally expensive process. A suggestion would be to use incremen-
tal clustering instead of the static clustering algorithm used now. Incremental
clustering is a method that deals with the problem of updating clusters without
frequently performing complete reclustering. This would be a more suitable way
for maintaining clusters in the typical, dynamic environment of spam detection.

Another issue about our algorithm is its rather naive approach to clustering
that may not capture all the meta–information possible hidden in the dataset.
More sophisticated clustering methods have been proposed in the literature that
focus on incorporating prior knowledge into the clustering process; conceptual
clustering, topic–driven clustering, just to name a few. These methods are based
in the idea that it is possible to use explicitly available domain knowledge to
constrain or guide the clustering process. In our case, the class labels of the
training set can constitute the domain knowledge and be used as guidance to a
clustering algorithm. This way, it can be reassured that the created clusters will
reflect the major concepts included in the corpus.

Other issues that can be further researched include the estimation and sta-
tistical basis of the optimum number of clusters and meta–features to be used.

53

8 Antonia Kyriakopoulou, Theodore Kalamboukis

References

1. Awad, M., Khan, L., Bastani, F., Yen, I. L.: An effective support vector machines
(SVMs) performance using hierarchical clustering. In: 16th IEEE International Con-
ference on Tools with Artificial Intelligence, pp. 663–667, (2004)

2. Baker, L. D., McCallum, A.: Distributional Clustering of Words for Text Classifi-
cation. In: ACM SIGIR 1998, pp. 96–103 (1998)

3. Burges, J. C.: A Tutorial on Support Vector Machines for Pattern Recognition. In:
Knowledge Discovery and Data Mining, vol. 2, pp. 121–167, (1998)

4. Dhillon, I. S., Mallela, S., Kumar, R.: A Divisive Information–Theoretic Feature
Clustering Algorithm for Text Classification. Journal of Machine Learning Research,
3, pp. 1265–1287 (2003)

5. Fung, G., Mangasarian, O. L.: Semi–Supervised Support Vector Machines for Un-
labeled Data Classification. Technical report (2001)

6. Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I): A
General Review. D-Lib Magazine 11, Nr. 4, (2005)

7. Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: BibSonomy: A Social Bookmark
and Publication Sharing System. In: 1th Conceptual Structures Tool Interoperability
Workshop at the 14th International Conference on Conceptual Structures. Aalborg:
Aalborg Universitetsforlag, pp. 87–102 (2006)

8. Karypis, G.: CLUTO a clustering toolkit.Technical report (2002)
9. Kyriakopoulou, A., Kalamboukis, T.: Text classification using clustering. In: ECML-

PKDD Discovery Challenge Workshop (2006)
10. Kyriakopoulou, A., Kalamboukis, T.: Using clustering to enhance text classifica-

tion. In SIGIR 2007, 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp805–806 (2007)

11. Kyriakopoulou, A.: Using Clustering and Co–Training to Boost Classification Per-
formance. In: ICTAI (2). IEEE Computer Society, pp. 325–330 (2007)

12. Kyriakopoulou, A.: Text Classification Aided by Clustering: a Literature Review.
I-Tech Education and Publishing KG, Vienna, Austria (2008)

13. Raskutti, B., Ferra, H. L., Kowalczyk, A.: Combining clustering and co–training to
enhance text classification using unlabelled data. In: KDD ACM 2000, pp. 620–625
(2000)

14. Raskutti, B., Ferra, H. L., Kowalczyk, A.: Using Unlabelled Data for Text Classi-
fication through Addition of Cluster Parameters. In: 19th International Conference
for Machine Learning (ICML 2002), pp. 114-121 (2002)

15. Salton, G., McGill, M. J.: Introduction to Modern Information Retrieval. McGraw
Hill (1983)

16. Slonim, N., Tishby, N.: The power of word clustering for text classification. In:
European Colloquium on IR Research, ECIR 2001, (2001)

17. Yu, H., Yang, J., Han, J.: Classifying large data sets using SVMs with hierarchical
clusters. In: 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 306–315, Washington, DC, USA, ACM (2003)

18. Zeng, H. J., Wang, X. H., Chen, Z., Lu, H., Ma, W. Y.: CBC: Clustering Based
Text Classification Requiring Minimal Labeled Data. In ICDM 2003, pp. 443–450,
IEEE Computer Society (2003)

19. Zhou, D., Bousquet, O., Lal, T. N., Weston, J., Scholkopf, B.: Learning with Local
and Global Consistency. In: NIPS 2003, MIT Press (2003)

54

Using Semantic Features to Detect Spamming in
Social Bookmarking Systems

Amgad Madkour1 , Tarek Hefni2, Ahmed Hefny1 , Khaled S. Refaat1

Human Language Technologies Group
IBM Cairo Technology Development Center1

P.O.Box 166 El-Ahram, Giza, Egypt
{amadkour,ahefny,ksaeed}@eg.ibm.com1 , t hefny@aucegypt.edu2

Abstract. Collaborative software is gaining pace as a vital means of
information sharing between users. This paper discusses one of the key
challenges that affect such systems which is identifying spammers. We
discuss potential features that describe the system’s users and illustrate
how we can use those features in order to determine potential spamming
users through various machine learning models.

1 Introduction

Spamming is a crucial challenge that affects both users and services providers.
Users are faced with spamming obstacles during activities such as web-based
searching. This often occurs when spammers use techniques or keywords to in-
crease the rank of their websites. This in turn overshadows more relevant pages
that users might be actually interested in. A famous form of spamming is that
a spammer might create a website with keywords most relevant to a common
accessory that a user maybe interested in. Other victims of spamming are email
service providers. Email providers use a lot of spam detection techniques in order
to minimize spam emails sent to their users.

Spam detection is faced with great challenges and thus various techniques
have been deployed. Some techniques are based on detecting the most common
keywords or key phrases that are frequently used in most spamming emails.
Other techniques are based on learning general patterns that spammers tend
to use to advertise their material. Some of them rely mostly on manually con-
structed pattern matching rules that need to be tuned to each user. A greater
challenge is that the characteristics of spam change over time which makes main-
taining the rules a daunting task. Other systems employ machine learning tech-
niques which allow the system to automatically learn to separate spam from
other messages. Classification techniques, based on different features that de-
scribe a user and posts, are used in order to differentiate between spamming and
non-spamming users.
2 Tarek Hefni is an undergraduate student at the American University in Cairo. At

the time of this work, he was an intern with IBM Cairo Technology Development
Center R&D Team.

55

In this work we target a specific type of collaborative social software systems
that suffers from spamming which is social bookmarking[12]. Its main focus is
collecting the user online bookmarks which the user generates. Other similar
systems are used to store user-generated scientific bibliographies. The main ele-
ment in such systems is a post. It’s composed of a user, a resource and a number
of tags annotating it. Systems such as social bookmarking allow users to upload
their resources, and label them with tags. The systems differ depending on the
type of resource being shared[7]. On most systems, users are described by their
user ID and tags may be arbitrary strings. Users are allowed to copy the re-
sources tagged by other users. They are also allowed to view information such
as who tagged what resource and so forth. The power of such a system is that
users are able to share or browse other users’ shared data.

The set of tag-resource relations is referred to as folksonomy[1]. It stands for
conceptual structures created by people. The collection of all user assignments is
called a user personomy. A collection of all personomies in turn constitutes the
folksonomy. There is widespread use of these systems due to the presence of shar-
ing mechanisms between users which enable breaking the knowledge acquisition
problem users face.

In this paper, we discuss various features that can be used to identify spam-
mers that target such systems. The main motivation of our work is to capture the
necessary features that discriminate spammers from non-spammers. Our second
motivation is to determine what an efficient classification model would be like.

2 Related Work

Li and Hsieh [11] proposed a group-based anti-spam framework investigating
the clustering structures of spammers based on spam traffic collected at a do-
main mail server. Their study showed that the relationship among spammers
demonstrates highly clustering structures based on URL grouping.

Krause and Schmitz [9] proposed a social bookmarking setting to identify
spammers using features based on the topological, semantic and profile-based
information. They used different classification techniques to evaluate their pro-
posed features. Their best results were achieved using SVM scoring a roc area
of 0.936.

Koutrica et al [8] introduced a framework for modeling tagging systems and
user tagging behavior. They proposed a tagging system where malicious tags and
malicious user behaviors are well-defined, and described and studied a variety of
query schemes and moderator strategies for tag spam detection.

Androutsopoulos et al [3] explored the idea that a Naive Bayesian classifier
could be used to filter spam mail. They also investigated the effect of some
parameters on the performance of the filter such as attribute-set size, training-
corpus size, lemmatization, and stop-lists. They discovered that the filter has a
stable significant positive contribution with additional safety nets like resending
private messages but is not viable when blocked messages are deleted.

56

Beil et al [5] introduced an approach which uses frequent item (term) sets
for text clustering. They used algorithms for association rule mining to discover
such frequent sets. They presented two algorithms for frequent term-based text
clustering: FTC and HFTC where the first creates flat clustering and the second
allows hierarchical clustering respectively.

Wetzker et al [12] analyzed 150 million bookmarks. They showed how book-
marks are vulnerable to spamming and how to limit such vulnerability to avoid
affecting the analysis process.

Hotho et al [2] specified a formal model for folksonomies and described their
system: BibSonomy, used for sharing both bookmarks and publication references
in a personal library. They showed that BibSonomy is valuable for researchers
because of the fact that it combines both bookmarks and publication entries.

Gomes and Cazita [10] provided a characterization of spam traffic using work-
load variation, density, inter-arrival time distribution, email size distribution,
temporal locality, etc., compared with non-spam emails. They showed that non-
spam email transmissions are typically driven by bilateral social relationship
while spam transmissions are usually unilateral actions based on the spammers’
will to reach a large number of recipients.

3 Semantic Features

Semantic features refer to annotations that are derived from the content of the
resources. We are motivated to show the value of using semantic features as a
means of detecting spammers.

For the first set of features, we used those mentioned by Krause et al. [9]. They
proposed a set of features that were extracted from a dataset with comparable
characteristics to the one under investigation. Our contribution is the usage and
creation of semantic features that could contribute to the classification accuracy.

The first feature [9] deals with counting the number of tags of the user which
contain ’group=public’. This feature measures the amount of tags that are pub-
licly shared with the social bookmarking community. This is used by spammers
in order to increase the exposure of spammed material to the public.

For the second and third features [9], we counted the number of resources
that are common between the current user and non-spammers in the training set
and the number of resources that are common between the user and spammers in
the training set, respectively. Common resources could be shared bookmarks or
shared BibSonomy items. Those two features allow measuring a ratio between
resources that the current user shares with the spammers and non-spammers
community.

Following the same concept for the fourth and fifth features [9], we counted
the number of tags that are common between the users and non-spammers in the
training set as well as the number of tags that are common between the users
and spammers in the training set. It is important to note that the difference
between those two features and the previous two is that a resource could be
assigned to more than one tag.

57

Similarly for the sixth and seventh features [9], we counted the number of
resource-tag couples that are common between the user and non-spammers in the
training set and the number of resource-tag couples that are common between
the user and spammers in the training set. This gives an indication about the
ratio of resources-tags for spammers and non spammers.

For the eighth, ninth and tenth features [9], we calculated the co-occurrences
of some of the previously mentioned features. The eighth feature is a calculation
of the co-occurrence generated when we compute the ratio between the second
and third features. The ninth feature is a calculation of the ratio between the
fourth and fifth features. The tenth feature is a calculation of the ratio between
the sixth and seventh features. All the co-occurrences features are based on the
assumption that spammers share the same vocabulary as non-spammers [9].

We are motivated to capture the keywords that always co-occur with spammed
material [9]. Those keywords are referred to as black-listed words. The black-
listed words are a list of words that generally occur in spammed material, such
as emails or websites, with high frequency. We developed a weighted version of
that list in order to use it for our proposed features. Using the training set, we
gave each word a score which represents the frequency between word repetitions
by spammers divided by frequency between word repetition by non-spammer.
We used the same technique for both tags and descriptions.

For the eleventh feature, we calculated the total score of each word in the
description of every bookmark for each user divided by the number of bookmarks
for the user. For the twelfth feature, we calculated the total score of each word in
the tags of every bookmark for each user. Those two features allow us to capture
the frequency of black-listed keywords within resources such as bookmarks and
tag names.

For our last feature, we counted how many times a tag was repeated with
other tags for the same resource by non-spammers. We created what we call a
tag-pair which consists of the two tokens inside the tag. The total score of the
feature is calculated as follows: for each tag-pair of each resource, if the user
used a defined tag-pair, we add one divided by the tag-pair score, otherwise, we
add three.

4 Dataset

We use the dataset provided for the ECML PKDD Discovery Challenge 2008.
The dataset consists of users and their posts. The information includes all public
information such as the URL, the description and all tags of the post. The
training data was composed of 22,200 patterns and the testing set was composed
of 9,959 which included 741 non-spamming users. In this paper, we report the
results obtained by using the testing set provided at training time.

58

5 Evaluation

The problem will be evaluated using AUC (Area Under ROC Curve). AUC es-
timates the probability that a randomly chosen positive instance will be ranked
higher than a randomly chosen negative instance [7]. It shows the relative trade-
offs between benefits (true positives rates) and costs (false positives rates)[13].

6 Experimental Setup

We experimented with five models: K-Nearest Neighbor Regression, Gaussian
Processes [6], Support Vector Machine (SVM), Neural Networks and Ensemble
Learning using both SVM and Neural Networks. We used Rapid Miner1 as our
machine learning toolkit.

6.1 K-Nearest Neighbor Regression

The following table shows the AUC values obtained using different values of k. A
low value of k results in an input-sensitive model while a high value of k results
in a smoothing model.

Length Scale AUC

3 0.863233176

5 0.87998662

7 0.886212826

13 0.901224341

15 0.900489829

17 0.902808017

19 0.904737342

30 0.908758165

35 0.90963878

40 0.909391328

50 0.909341884

Table 1. K-Nearest Neighbor Results

The best AUC value (0. 90963878) is achieved at k = 35. It is worth noting
that both Gaussian Processes and KNN regression performed best at a point of
notably high smoothing (low variance).

1 http://rapid-i.com

59

6.2 Gaussian Processes

We used Gaussian Processes[6] with Radial Basis Function (RBF) kernel while
restricting the maximum number of basis functions to 100. This restriction sig-
nificantly reduced training time without any notable change to the AUC value
(compared to 1000 basis functions). The following table shows the obtained AUC
values on the validation set for different values of the Length-Scale of the RBF
kernel. A low value of L results in an input-sensitive (high variance) model while
a high value of L results in a smoothing model.

Length Scale AUC

3 0.770784148624904

10 0.781429115194297

20 0.84661283935238

40 0.921302082732583

80 0.932317150535772

81 0.929417857595996

82 0.929390174977221

83 0.929390174977221

85 0.926760095505033

90 0.923650491558724

100 0.915941266710499

150 0.886343702780949

Table 2. Gaussian Processes Results

The best AUC value (0.932317150535772) is achieved at length scale of 80,
a relatively high value.

6.3 Support Vector Machines

As for the SVM, we used cost-based learning [14][15][4]. Assigning a cost of 7
for labeling a user as non-spammer produced highest results. Accordingly, we
reached the following figures:

Kernel Gamma/Pol.Degree AUC

RBF 1 0.9501623

RBF 1.2 0.9521352

RBF 2 0.9509834

RBF 7 0.9487790

Polynomial 9 0.9519381

Table 3. Support Vector Machine Results

60

To improve results, we employed a cascading scheme in which an SVM model
(of configuration 2) is used to classify data patterns and another SVM model is
used to reclassify difficult patterns. A difficult pattern is a pattern that produced
an output in the range between -1 and 1 in the first SVM model, meaning that
there is too little confidence to classify it. The second model is trained using
the difficult points in the training set; we classified our training set using the
first model and extracted the difficult points which we used to train the second
model. Adding the second model with parameters different than the first model
would assure that the difficult points that are misclassified by the first model are
classified correctly by the second model. The table below shows the parameter
configurations we tried for the second model (cost value is the same) and the
AUC achieved by each.

Kernel Gamma/Pol.Degree AUC

RBF 1.22 0.9526184

RBF 1 0.9525310

RBF 0.9 0.9487790

Polynomial 9 0.9518192

Table 4. Support Vector Machine Results with Cascading Schema

It was observed that using one classifier misclassified 350 users of the 9950
users of the test set.

6.4 Neural Networks

We used a Neural Network Model with learning rate 0.6 and momentum 0.3
for 9000 epoch. The network contained one hidden layer of thirty neurons with
a sigmoid activation function. The model resulted in an AUC of 0.9394533.
Decreasing the learning rate to 0.4 decreased the AUC to 0.9238232.

6.5 Combined NN and SVM

Finally, we attempted an ensemble learning scheme where we averaged the out-
puts of the best two SVM models and the best Neural Network model. This
produced an AUC of 0.9425323421.

Using the proposed features of [9] to train our models with the first ten
features, we achieved an AUC of 0.941243347. Adding the eleventh feature alone
(weighted black list feature) resulted in an AUC of 0.950537472. By adding the
final feature, we reach our best model giving an AUC value of 0.9526184.

7 Conclusion

In this paper we discussed the semantic features that can be used to detect
spammers in a social bookmarking system. Our proposed features demonstrate

61

improved results compared to the ones proposed by [9] on the competition test
set taking into consideration the comparable dataset. The paper also discussed
the results obtained by training various classifiers. In addition, this paper demon-
strated how the cascading scheme model provided better results and partially
tackled the border-line of classification that [9] mentioned. We used the Area
Under ROC Curve method to evaluate our results and the best result obtained
was 0.9526.

References

1. A Capocci, G Caldarelli. Folksonomies and clustering in the collaborative system
CiteULike.

2. A Hotho, R Jaschke, C Schmitz, G Stumme. BibSonomy: A Social Bookmark and
Publication Sharing System.

3. Androutsopoulos. An Evaluation of Naive Bayesian Anti-Spam Filtering. Proceed-
ings of the workshop on Machine Learning in the New Information Age, G. Potamias,
V. Moustakis and M. van Someren (eds.), 11th European Conference on Machine
Learning, Barcelona, Spain, pp. 9-17, 2000.

4. B. Scholkopf, A. J. Smola. Learning with Kernels. The MIT Press Cambridge, Mas-
sachusetts London, England 2002.

5. Beil et al. Frequent Term-Based Text Clustering. SIGKDD 02 Edmonton, Alberta,
Canada

6. Carl Edward Rasmussen, Chris Williams. Gaussian Processes for Machine Learning.
the MIT Press, 2006

7. E Santos-Neto, M Ripeanu, A Iamnitchi. Tracking Usage in Collaborative Tagging
Communities.

8. G. Koutrika, F. A. Effendi, Z. Gyongyi, P. Heymann, and H. Garcia-Molina.: Com-
bating spam in tagging systems. In Proc. AIRWeb , pages 57 New York, NY, USA,
2007 ACM.

9. Krause, Beate. Schmitz, Christoph. Hotho, Andreas. Stumme, Gerd. The Anti-
Social Tagger - Detecting Spam in Social Bookmarking Systems. AIRWeb ’08, April
22, 2008 Beijing, China.

10. L. H. Gomes, C. Cazita. Characterizing a Spam Traffic. In the proceeding of IMC
04, Oct. 2004.

11. Li, Hsieh. An Empirical Study of Clustering Behavior of Spammers and Group-
based Anti-Spam Strategies. CEAS 2006 Third Conference on Email and Anti-
Spam, July 27-28, 2006, Mountain View, California USA.

12. R Wetzker, C Zimmermann, C Bauckhage3. Analyzing Social Bookmarking Sys-
tems: del.icio.us Cookbook. July 10th, 2008.

13. T. Fawcett. An Introduction to ROC Analysis. Pattern Recogn. Lett., 27(8)861
2006.

14. Yoav Freund, Robert E. Schapire. Experiments with a new boosting algorithm. In
Machine Learning: Proceedings of the Thirteenth International Conference, pages
148156, 1996.

15. Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119139, 1997.

62

Predicting Tag Spam Examining Cooccurrences,
Network Structures and URL Components

Nicolas Neubauer and Klaus Obermayer

Neural Information Processing Group, Technische Universität Berlin,
neubauer|oby@cs.tu-berlin.de

Abstract. The task of the ECML/PKDD Discovery Challenge 2008 is
to identify spammers in a social bookmarking system. We classify users
using three different types of features, based on cooccurences, network
properties and url parts. Cooccurrence features are based on the assump-
tion that users associated with similar documents and tags as spammers
are likely to be spammers themselves. Network-based features work on
a collective scale, assuming common behavioural patterns which can be
identified in the graph structures created by tagging activities. Finally,
a text classification on the URLs’ components identifies frequent terms
in spam URLs. With these features, we train an SVM for classification.
Our submission run, combining all three classes of features, performed
worse than expected from previous tests. With the wisdom of hindsight,
we find an optimal choice of features is to leave out network features
entirely but to strengthen URL classification. This is, however, a side
effect of wrong assumptions about the test set; network features, used
alone, still yield positive results. As network features do not depend on
the presence of labeled users, they should be further explored to identify
structural properties of tag spam even when no ground truth exists.

1 Introduction

Social bookmarking systems have come of age. One of the less pleasant
indicators of this development is the arrival of the spammers. This year’s
ECML/PKDD Discovery Challenge has provided researchers with data
from users of a social bookmarking site (www.bibsonomy.org), marked as
spammers or non-spammers, along with the documents they bookmarked
and the tags they used. The goal was to learn a model to distinguish
spammers from regular users in an unknown test dataset. We present
our approach and the results on the dataset.

So far, not much research has been conducted on spam in social book-
marking sites. [4, 7] have, e.g., simulated the impact of certain spamming
practices on the overall properties of a social bookmarking dataset in de-
pendence of a number of key parameters. In [2], spam is mentioned briefly
as it causes a deviation from an otherwise smooth strength distribution
of a tag network. Most related to our current task is however [8], in which
the organizers of this workshop performed experiments on an earlier ver-
sion of the current dataset. Our work is similar in that we create user

63

Fig. 1. Distribution of spam in the different sets

features on which we train a classifier. However, we explore other fea-
tures: We vary the exploitation of cooccurrence patterns already used in
[8], but also introduce features based on network analysis, and perform
a text classification on the url components of the bookmarks.

2 Dataset

2.1 Basic Properties

The training dataset provides 14,074,956 triples E = (d, u, t) ∈ D×U×T ,
where D is the set of 1,425,108 documents, U is the set of 31,715 users,
and T is the set of 310,234 tags. If we interpret D, U and T as nodes
and E as edges, this defines a 3-partite 3-hypergraph. Documents can
either be bibliographic references or WWW bookmarks and come with
associated metadata like URL, title etc. Users are simply presented as
IDs and labeled as spammers or non-spammers. Tags are strings. The
merged training and test dataset consists of 16,818,699 triples, 1,574,963
documents, 38,920 users and 396,474 tags. Of the additional 7,205 users,
only 171, i.e. 2.37% are regular users.
Figure 1 shows the distribution of spam and non-spam elements in the
training dataset. The most striking fact is that 29,248 of 31,715 users
are spammers, i.e., only 7.78% are legitimate users. Most tags and docu-
ments are used by spammers or non-spammers exclusively and can thus
be regarded as spam or non-spam as well. Overlap between use by spam-
mers and non-spammers is very rare in documents, but more frequent
among tags. This indicates two different incentives for spammers: They
may post spam bookmarks under frequently used tags, such that other
users browsing the repository are led to their pages. Posting bookmarks
under other, sometimes randomly created tags, probably serves the pur-
pose of creating links from reputated sites (the bookmarking site) to
the spammed page, trying to trick search engines into improving the
spammed page’s rank.
Figure 2 shows the distribution of connections (in the training set) be-
tween elements of the different types as the accumulative probability
distribution of elements of one type having x connections to elements of
any other type. We can see that

64

(a) users per document (b) documents per user (c) documents per tag

(d) tags per document (e) tags per user (f) users per tag

Fig. 2. Accumulative distribution of number of connected elements for spam(red), non-
spam(green) and mixed(blue) elements

– Around 90% of all documents are only bookmarked by one person
– The numbers of tags per document, tags per user and users per tag

differ visibly for spam and non-spam elements.
– Documents and tags used by both spammers and non-spammers

(blue in the graphs) tend to have strongly different characteristics.

2.2 Creating a probe dataset

Many features we will present in the following use cooccurrence infor-
mation. With such features, it is important to exclude the cooccurrence
information for the users we want to test them on. We therefore split
the training dataset into five subsets, each containing the nth fifth of
spam and the nth fifth of non-spam users (see Figure 7(a)). Most of our
analysis used cooccurrence information from the first four datasets, and
evaluated on the fifth (“probe”) one. We thereby simulate predicting
future users knowing roughly four times as many users from the past.

3 Features

3.1 Cooccurence Features

Distributing Spaminess Let a tag’s or a document’s spaminess be the
frequentist probability that a user using/tagging that element is a spam-
mer. We formalize these notions for documents; they are equivalently
definied for tags. Let U+(d), U−(d) and U?(d) be the set of spam, non-
spam and unknown users who tagged a document. Then we can define a

65

(a) simple distribution (b) iterated distribution

Fig. 3. Accumulative document spaminess after spaminess distribution for spam(red),
non-spam(green) and mixed(blue) documents

document’s spaminess s(d) as well as a certainty c(d) for that measure,
based on the fraction of known users, as

s(d) =
|U+(d)|

|U+(d)| + |U−(d)| , c(d) =
|U+(d)| + |U−(d)|

|U+(d)| + |U−(d)| + |U?(d)| .

If there are no known users for a given element, the certainty is set to 0,
and spaminess to the average of all documents. Now, an unknown user’s
spaminess can be computed as

s(u) =
d∈D(u)

s(d)c(d)

d∈D(u)
c(d)

, D(u) = {d ∈ D : ∃t ∈ T : (d, u, t) ∈ E}

This can be interpreted as a graph traversal: Starting from the unknown
user u, we choose a document randomly, weighted by its certainty. Then
we choose a random known user associated with that document. s(u) is
the probability that this user is a spammer.
See Figure 3(a) for the distribution of the resulting values. Non-spam
documents have either a value of 0 or, if unknown, the average (around
.8), whereas spam documents have a value of either the average or 1.
We see that a significant part of both spam and non-spam documents
receive the default average value and can thus not be used to classify
users. This is due to the high fraction of documents with very few uses
(see Figure 2(a)).

Iterated Spaminess Distribution Even if we cannot tell a document’s
spaminess by the users that have tagged it, we might learn something
from the tags it was tagged with. In the same manner, we can estimate
a tag’s spaminess by the documents it was used for. In order to use this
information we compute a second feature for each element, its iterated
spaminess si and the according certainty ci. We initialize si and ci with
the original values s and c, and then compute

ci(d) =
t∈T (d)

ci(t)

|T (d)| , T (d) = {t ∈ T : ∃u ∈ U : (d, u, t) ∈ E}

si(d) =
t∈T (d)

: si(t)ci(t)

ci(d)

66

www.programmableweb.com www.ingenieurkarriere.de

Fig. 4. Induced bipartite graph ED for two documents. Dots are spammers (red) and
non-spammers (green)

This process is repeated iteratively for all tags and documents with cer-
tainty 0 until no such elements remain or no further information can be
spread. Figure 3(b) shows the smoothing effect of this transformation.

Cosine Similarity As introduced in [8], a simple way to exploit cooc-
curence information is to create a similarity function between users based
on their used tags, and predict a user’s spaminess as the sum of the known
users’ spaminess weighted by that similarity. We followed that approach
by creating tag (and document) vectors for each user such that each
component corresponds to a given tag, and the value of that component
would be 1 if the user used that tag. Then, the cosine between the two
tag vectors serves as a similarity function.

3.2 URL Classification

A central aspect in deciding whether a given bookmark is spam or not
should be its content. While we cannot download all bookmarked URLs,
we estimate their content by analyzing the terms used in the URLs them-
selves. We split each URL by the dashes, remove dots, colons, and fre-
quent elements like “http”, “www” or “html”, and create a feature vector
containing a tfidf representation of its terms. We then use the feature vec-
tors of all URLs with spaminess 0 (as computed using the first four fifths
of the training set during testing, and using the whole training set for
the final prediction) as negative samples, and an equal number of URLs
with spaminess 1 as positive samples. After training a linear SVM[3], we
classify all URLs with a spaminess between 0 or 1 (urlspam(d)), skipping
those URLs which do not contain any known URL part. This yields us
with a new user features

url(u) =
d∈Durl(u)

urlspam(d)

|Durl(u)| ,

67

Durl(u) = {d ∈ D : (∃t : (d, u, t) ∈ E) ∧ urlspam(d) is defined}
In what turned out to be a major wrong design decision, we smoothened
this feature by blending it with a user’s document spaminess s(u):

urlsmooth(u) =
curl(u)url(u) + cspaminess(u)s(u)

curl(u) + cspaminess(u)
,

where curl(u) is the fraction of u’s documents that have a url predic-
tion and cspaminess(u) is the average spaminess certainty c(d) for all u’s
documents.

3.3 Induced Graphs

Last, we aimed to translate network features into useful user features. To
examine only relevant portions of the overall graph structure, we define
“induced graphs” as the bipartite graphs gained by fixing an element
from one of the three sets, and connecting those elements from the other
two sets that are connected via the fixed element. For example, we might
fix a document and then examine all users and tags associated with it,
with edges connecting users with the tags they used for the document.
More formally, we define the induced graphs by its edges ED, EU and
ET obtained by fixing a particular document, user, or tag as
– ED(d′) = {(u, t) ∈ U × T | ∃(d′, u, t) ∈ E}

– EU (u′) = {(d, t) ∈ D × T | ∃(d, u′, t) ∈ E}

– ET (t′) = {(d, u) ∈ D × U | ∃(d, u, t′) ∈ E}

Refer to Figure 4 for two examples of bipartite graphs induced by a
(mostly) non-spam- and spam document, respectively, rendered using
the GraphViz package1. We hope these examples convey the intuition
that graphs created by spamming should have different properties than
those created by legitimate activity. We used the NetworkX package2 to
obtain various properties of the induced graphs and created user features
either by using the resulting values directly (for EU), or by averaging over
the values of all associated elements (for ED and ET).

Connected components A connected component of a graph G is a set
of nodes such that any node can be reached from any other node in
that component by travelling along the edges in G. If a graph is disjoint,
the number of connected components describes the number of discon-
nected subgraphs (both examples in Figure 4 show networks with two
connected components). See Figure 5 for the distributions of connnected
components across tag-induced graphs and the resulting user features.
We also obtained the number of strongly connected components in each
graph (except in those cases where one of the sets of elements was bigger
than 1000, due to time reasons). Strongly connected components are
components of the graph in which all nodes are connected to each other.

1 www.graphviz.org
2 networkx.lanl.org

68

(a) Distribution in tag-induced
graphs

(b) Distribution of resulting user
features

Fig. 5. Connected components

Characteristic Path Length The characteristic path length is the av-
erage shortest path distance between two arbitrary nodes in the graph.
Again, we computed this number for all graphs in which no element set
exceeded 1000 elements.

Degree Ratios Finally, we observed the ratio between the average de-
grees of each element set, normalized by the size of the other set. For a
user-induced graph, this would mean

dd,t(u) =
avg degree(D(u))

|T (u)| · avg degree(T (u))

|D(u)| ,

where avg degree(S) is the average degree of all components in S.

3.4 K-Cores

A k-core[9] is a subgraph of a graph G containing all elements that are
connected to at least k elements which are also in the core. k-Cores
have been used, for example, for the efficient decomposition of large net-
works[1]. In [5], a k-core of a tagging dataset is used for testing methods
requiring a highly connected graph. We extend the definition of a k-core
on non-partitioned graphs to a K-core, where K ∈ N(n,n) for n-partite
graphs such that K(x, x) = 0 ∀ x ∈ {1, . . . , n}. Each entry K(i, j) indi-
cates the minimum number of connections that elements from set i need
to have to elements from set j. For the given case of a 3-partite graph

with element types (documents, users, tags), we get a
a b

c d
e f

-Core in-

dicating that each document needs to be connected to a users and b tags,
each user needs to be connected to c documents and d tags, and each tag
needs to be connected to e documents and f users. Six-dimensional con-
straints allow for a wide variety of K-cores to be examined. We examine
two different types of K − cores, regular K-Cores Kr(a) which raise all
constraints in parallel, and singular K-Cores Kn,m

s (a), raising the single
constraint at position (n, m):

Kr(a) =
a a

a a
a a

, K1,2
s (a) =

a 2
2 2
2 2

.

69

(a) relative size of cores and spami-
ness of their members

(b) avg. maximum core spaminess
over users’ tags

Fig. 6. Cores

We compute Kr(a) for a ∈ {2, 3, 4, 5, 10, 15, 20}, and all six Ks(a) for
a ∈ {3, 5, 10, 20, 50, 100, 500, 1000, 2000}.
Figure 6(a) shows the development of the different singular cores as we
increase a: The higher the constraint, the less elements in a core (plot-
ted on the y-axis as the fraction of the total set of tags). However, the
spaminess of the remaining elements, in general, increases. For example,
the core “documents per tag” (K3,1

s), for a certain value of a, contains
around 3% of all tags, and those tags are much more likely to be spammy
(̃.97) than average (̃.86). We determine, for each element, the maximum
average spaminess (again, computed by the previously available data)
of over all cores it is contained in. Figure 6(b) shows the distribution
of the corresponding user feature, averaging over users’ tags’ maximum
core spaminess.

3.5 Other Features

Connection Strength For each tag/document pair, we counted the num-
ber of users that used it together. We noticed that high values tend to
imply spaminess. Therefore, we produced two user features measuring
the averages of each document’s a) average and b) maximum connection
strength .

Counting Finally, we observed the average number of user per document
(again averaged to the single user), the average ratio of tags and users
per document, and simply the number of entries per user.

4 Experiments & Results

4.1 Single Features

A detailed list of the features generated from each group is presented in
Table 1. It documents the AUC values for each feature when used alone
as predictor, both on the probe and the test dataset.

70

Table 1. Features by group, and AUC value if used as single predictor

Used by

Feature name AUC(val.) AUC(test) S N O

Cooccurence Features
Avg. Spaminess

Documents 0.676 0.689 s o
Certainty 0.435 0.413 s o
Std.Dev 0.445 0.463 s o

Tags 0.839 0.926 s o
Certainty 0.552 0.529 s o
Std.Dev 0.321 0.276 s o

Avg. Spaminess (iterated)
Documents 0.813 0.900 s o

Std.Dev 0.401 0.382 s o
Tags 0.842 0.918 s o

Std.Dev 0.327 0.255 s o
User Cosine Similarity

Documents 0.554 0.533 s o
Tags 0.823 0.887 s o

Avg. Document * Avg. Tag Spaminess
Normal(tags) * Iterated(documents) 0.843 0.929

Features of Induced Graphs
Degree ratios

Avg (deg(user)/deg(document)) per tag 0.518 0.565 s n
Avg (deg(user)/deg(tag)) per document 0.669 0.660 s n
deg(docs)/deg(tag) 0.683 0.674 s n

Characteristic Path Length
User 0.607 0.579 s n
Avg. per tag 0.375 0.358 s n
Avg. per document 0.659 0.658 s n

Connected components
#connected components/#entries by user 0.328 0.350 s n
Avg. #connected components per tag 0.681 0.704 s n

Strongly connected components s n
Avg per tag 0.551 0.575 s n
Avg per document 0.389 0.398 s n
User 0.469 0.499 s n

Other Features
Connection strength

Avg (Avg. connection strength per document) 0.560 0.576 s n
Avg (Max. connection strength per document) 0.549 0.559 s n

Spaminess of highest containing core
User 0.500 0.500 s n
Avg. per document 0.500 0.532 s n
Avg. per tag 0.622 0.641 s n

URL classification
Smoothed avg. URL prediction per document 0.765 0.712 s
Avg. URL prediction per document 0.814 0.787 o

Counting features
Avg. #users per document 0.503 0.515 s n
Avg. #tags/#users per document 0.674 0.660 s n
entries 0.642 0.627 s n o

71

(a) Splitting training data into 5
probe datasets

(b) AUC value of tag * iter. doc.
spaminess on probe and test data

Fig. 7. Construction of probe datasets and performance of spaminess predictors

Cooccurrence Features We find that the average spaminess, particularly
of tags, is a strong predictor of a user’s spaminess. Iterating spaminess
distribution helps to increase the expressiveness of document spaminess.
The product of tag spaminess (see Figure 7(b) for performance on the
different probe datasets and on the test dataset) and iterated document
spaminess performs better than our final predictor on the test set.

URL prediction Apart from cooccurrence features, the url predictor is
the strongest single predictor of spaminess. In particular, smoothing does
not seem necessary.

Induced Graphs Many of the features describing the statistical proper-
ties of induced graphs seem to indicate a tendency towards spaminess or
non-spaminess, but no single feature is useful as a stand-alone predictor.
The degree ratio between documents and tags in user-induced graphs,
and the number of connected components in tag-induced graphs seem to
be the most relevant single predictors.

K-cores K-Cores only turned out useful for tags on the probe and the
test set, while using them on other portions of the training set (not shown
here) yielded better results; it seems that the “younger” members of the
graphs (which we predict here) are not connected strongly enough to
show up in expressive cores.

Other features The ratio of tags per user, for documents, turns out
to be a useful measure, as motivated by the graphs shown in Figure 4.
Also, the simple number of entries per user provides a tendency towards
spaminess.

4.2 Classifying Feature Vectors

Training a classifier With a given set of features for the probe dataset,
we trained a Support Vector Machine using SVMLight[6] using a five-
fold cross-validation. Across various situations, we found a polynomial
kernel of degree 6 with a balancing factor of 0.077 (the fraction of non-
spammers in the training dataset) to be best. We train our classifier on
the normalized features generated for the probe set and use it to predict
the corresponding feature vectors of the test set.

72

(a) ROC curves on test set (b) AUC values for cross-validation
on the probe set, prediction on the
test dataset, and cross-validation
on the test dataset

Fig. 8. Final performance values

Results See Figure 8 for the final results of our predictors. We obtained
an AUC of 0.913 on the test set with our submission run, using basically
all the features introduced earlier (see column “S” in Table 1). Unable to
resist the temptations of hindsight, we tried several other configurations
of features, finding that leaving out network features entirely and using
the unsmoothed URL prediction (see column “O”) yielded the best result
of 0.961. We also examined the performance of network-based features
alone (column “N”), yielding an AUC of 0.854. Finally, we added to
the overview the performance of using, without an additional classifier,
the product of the tag spaminess and the iterated document spaminess
(0.929).

5 Conclusions & Outlook

The most striking result of the presented experiments is that, at the end
of the day, our constructed classifier performs worse than a simple prod-
uct of two of the features used, tag and iterated document spaminess.
What happened? If we regard Figure 8(b), we may get an idea: The
spaminess features perform a lot worse (almost .1 AUC) on the probe
set than on the test set. The trained classifier weighs the features ac-
cordingly and is thus not able to benefit from the improved spaminess
features in the test set. The quality of the network measures remains
stable from probe to test set, and so does the submitted classifier. Leav-
ing out network properties during training (classifier “optimal”) forces
the classifier to weigh cooccurrence features more strongly, and thus the
increased quality of those features is used. Performing a cross-validation
on the test set (last block), both classifiers correctly identify the strength
of the of the spaminess and perform about equally; whatever difference
remains is due to the weakening smoothing used for the URL classifier.
A conclusion of these results is that our creation of a probe dataset was
faulty. As Figure 7(b) shows, cooccurrence feature performance deterio-
rates as we go from predicting the oldest (1) to the latest (5) users. We
chose the last fifth of the users as our probe dataset, assuming that pre-
dicting the test set would be most similar to predicting the latest users

73

in the training set. This is obviously not the case,– the question why it
isn’t remains open for now and should be further explored.
We do find the network features promising, as they produce insight into
the structural properties of spamming behaviours. In contrast to cooc-
currence or URL features, no labeled users are needed for their construc-
tion. This could prove valuable when examining new datasets for which
no labels have been created yet.

6 Acknowledgments

The first author is funded through a scholarship of the Integrated Gradu-
ate Program “Human-Centric Communication” and partially supported
via the EU NoE P2P Tagged Media (PeTaMedia). We thank Matei Lev-
enter, funded via DFG grant no. OB 102/10-2 (Learning Agents for Text
Classification) for implementing the URL-based predictor, and Frank
Schumann for invaluable feedback on earlier versions of this paper.

References

1. J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani.
k-core decomposition: a tool for the analysis of large scale internet
graphs, 2005.

2. C. Cattuto, C. Schmitz, A. Baldassarri, V. D. P. Servedio, V. Loreto,
A. Hotho, M. Grahl, and G. Stumme. Network properties of folk-
sonomies. AI Communications Journal, Special Issue on ”Network
Analysis in Natural Sciences and Engineering”, 20(4):245–262, 2007.

3. Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 2008. To appear.

4. P. Heymann, G. Koutrika, and H. Garcia-Molina. Fighting spam on
social web sites: A survey of approaches and future challenges. IEEE
Internet Computing, 11(6):36–45, 2007.

5. A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information re-
trieval in folksonomies: Search and ranking. In Proceedings of the 3rd
European Semantic Web Conference, volume 4011 of LNCS, pages
411–426, Budva, Montenegro, June 2006. Springer.

6. T. Joachims. Making large-scale support vector machine learning
practical. In Advances in Kernel Methods: Support Vector Machines.

7. G. Koutrika, F. Adjie Effendi, Z. Gyöngyi, P. Heymann, and
H. Garcia-Molina. Combating spam in tagging systems. In AIRWeb
’07: Proceedings of the 3rd international workshop on Adversarial in-
formation retrieval on the web, pages 57–64, New York, NY, USA,
2007. ACM.

8. B. Krause, A. Hotho, and G. Stumme. The anti-social tagger - de-
tecting spam in social bookmarking systems. In Proc. of the Fourth
International Workshop on Adversarial Information Retrieval on the
Web, 2008.

9. S. B. Seidman. Network structure and minimum degree. Social Net-
works, 5:269–287, 1983.

74

Multilabel Text Classification for
Automated Tag Suggestion

Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas

Department of Informatics,
Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
{katak,greg,vlahavas}@csd.auth.gr

Abstract. The increased popularity of tagging during the last few years
can be mainly attributed to its embracing by most of the recently thriving
user-centric content publishing and management Web 2.0 applications.
However, tagging systems have some limitations that have led researchers
to develop methods that assist users in the tagging process, by automat-
ically suggesting an appropriate set of tags. We have tried to model the
automated tag suggestion problem as a multilabel text classification task
in order to participate in the ECML/PKDD 2008 Discovery Challenge.

1 Introduction

Tagging can be defined as the process of assigning short textual descriptions or
key-words (called tags) to information objects. It is a simple approach to infor-
mation organization that was regularly practiced over the last decades. Scientific
publications for example, are often accompanied by a list of keywords that are
either freely entered or selected from an ontology (e.g. ACM Computing Classi-
fication) by their authors.

The increased popularity of tagging during the last few years can be mainly
attributed to its embracing by most of the recently thriving user-centric content
publishing and management Web applications (also known as Web 2.0 applica-
tions), such as wikis, web logs (blogs), and resource sharing systems, as one of
the main means for the organization of their content.

Within most of these Web 2.0 applications, tagging is characterized by an
additional social dimension, as the tagging process involves multiple users at-
taching freely selected tags to shared content (collaborative tagging).

The simplicity and popularity of collaborative tagging as an information orga-
nization approach comes at the expense of several limitations [1]. Firstly, people
choose tags based on their personal opinions, their knowledge background and
their preferences. Furthermore, users may be describing the same object based
on different granularity. This creates a noisy tag space and thus makes it harder
to find material tagged by other users. Secondly, people may use polysemous
words (a word that has many related senses) in order to tag the web resources.
The lack of semantic distinction in tags can lead to inappropriate connections

75

2

between items. Another problem is that different tags, which are either syn-
onymous or have closely related meaning increase data redundancy, leading to
reduced recall of information. Last, but not least, people tend to assign a very
small number of tags to an object.

All these limitations have led researchers to develop methods that assist
users in the tagging process, by automatically suggesting an appropriate rich
set of tags, in order to avoid the aforementioned obstacles. Related work in
the field involve collaborative filtering [2], graph based [2] and text mining [3,
4] approaches. In this paper we view this problem from a different perspective,
modeling it as a multilabel text classification task.

The rest of the paper is structured as follows. In the next section we provide
some background information on the problem of multilabel classification. After
that, we briefly describe the task of the discovery challenge that we have partic-
ipated in. In Section 4 we present the datasets and comment on some of their
main characteristics. In Section 5 we describe the proposed recommender that
we evaluate in Section 6. Finally, Section 7 concludes this work.

2 Multilabel Classification

Traditional single-label classification is concerned with learning from a set of
examples that are associated with a single label λ from a set of disjoint labels
L, |L| > 1. If |L| = 2, then the learning task is called binary classification (or
filtering in the case of textual and web data), while if |L| > 2, then it is called
multi-class classification. In multilabel classification, the examples are associated
with a set of labels Y ⊆ L.

Multilabel classification is a challenging research problem that emerges in
several modern applications such as music categorization [5, 6], protein function
classification [7–10] and semantic classification of images [11, 12]. In the past,
multilabel classification has mainly engaged the attention of researchers working
on text categorization [13–15], as each member of a document collection usually
belongs to more than one semantic category.

Multilabel classification methods can be categorized into two different groups
[16]: i) problem transformation methods, and ii) algorithm adaptation methods.
The first group of methods are algorithm independent. They transform the mul-
tilabel classification task into one or more single-label classification, regression
or label ranking tasks. The second group of methods extend specific learning
algorithms in order to handle multilabel data directly.

The most widely-used problem transformation method, called Binary Rele-
vance (BR Learning), considers the prediction of each label as an independent
binary classification task. It learns one binary classifier hλ : X → {¬λ, λ} for
each different label λ ∈ L. It transforms the original data set into |L| data sets
Dλ that contain all examples of the original data set, labeled as λ if the labels
of the original example contained λ and as ¬λ otherwise. It is the same solu-
tion used in order to deal with a multi-class problem using a binary classifier,
commonly referred to as one-against-all or one-versus-rest.

76

3

3 Task Description

We have participated in the second task “Tag Recommendation in Social Book-
mark Systems”. Bibsonomy1 is a social bookmarking and publication-sharing
system. A user may store and organize Bookmarks (web pages) and BibTeX en-
tries. The main tool provided for content management in BibSonomy is tagging.
Users can freely assign tags to Bookmark or BibTeX items when they submit
them to the system. This task of the competition requires the development of rec-
ommender system for BibSonomy. The recommender should efficiently propose
a relevant set of tags to the user when he/she submits a new item (Bookmark
or BibTeX) into the system. The organizers of the competition made available a
training set including examples of users assigning tags to Bookmark and BibTeX
items. A new, unseen, test set will be provided in order to evaluate candidate
recommenders. The decisions of each system will be compared with the true tags
and the average f-measure will be calculated.

Let D be an evaluation data set, consisting of |D| examples (xi, Yi), i =
1..|D|, Yi ⊆ L. Let h be a recommender and Zi = h(xi) be the set of labels
predicted by h for example xi. The Precision, Recall and F-measure for the
recommender h on test dataset D is calculated as follows.

Precision(h, D) =
1
|D|

|D|

i=1

|Yi ∩ Zi|
|Zi|

Recall(h, D) =
1
|D|

|D|

i=1

|Yi ∩ Zi|
|Yi|

F(h, D) =
1
|D|

|D|

i=1

2|Yi ∩ Zi|
|Zi| + |Yi|

4 Data Analysis and Preprocessing

Three training files were provided for the tag recommendation task namely tas,
bookmark and bibtex.

– tas file: contains the tags that a particular user has assigned to a particular
item.

– bookmark file: contains metadata for bookmark items like the URL of the
web page, a description of the web page, etc.

– bibtex file: contains metadata for the bibtex items like the title of the paper,
the authors, etc.

In Table 1 you can see the attributes of all three training files.

1 BibSonomy - http://www.bibsonomy.org

77

4

Table 1. Attributes of the three files

File Attributes

tas user, tag, content id, content type, date

bookmark content id, url hash, url, description, extended

description, date

bibtex content id, journal volume, chapter, edition, month,

day, booktitle, howPublished, institution, organization,

publisher, address, school, series, bibtexKey, url, type,

description, annote, note, pages, bKey, number, crossref,

misc, bibtexAbstract, simhash0, simhash1, simhash2,

entrytype, title, author, editor year

Note that in bookmark and bibtex files the same resource (i.e. web page
or BibTeX entry) may appear several times, one for every user submitted the
web page or BibTeX item. Different users might add different meta-data and, of
course, different tags into a resource. A BibteX item is identified by its unique
simhash1 attribute and a Bookmark item by its unique url hash attribute. The
content id field links the three tables and is unique for a <user,resource> pair.

In order to evaluate the proposed approach we have divided the available
files into train and test. We have kept the 80% of the tas file for training and
the rest for testing. The corresponding bookmark and bibtex train and test files
were created based on the tas file using the content id identifier.

Some interesting statistics that we obtained from the data and exploited in
our method are presented below:

– In the initial tas file there are 816197 records, corresponding to single tags
assigned by a specific user into a resource.

– There are 268692 posts in the tas file (tag-set assignments from a particular
user to a specific resource).

– There are 176141 bookmark posts.
– 156054 unique bookmark resources (web pages) in the bookmark file distin-

guished by the url hash attribute.
– There are 92544 bibtex posts.
– 71704 unique bibtex items in the bibtex file distinguished by the simhash1

attribute.
– Only 18192 of the above bibtex items contained abstract descriptions.

After we split the original data into training and test files the following
statistics were calculated.

– Only 8.55% of the bookmark items in the test set also exist in the training
set.

– Only 9.77% of the bibtex items in the test set also exist in the training set.
– 65.69% of the bookmark users in the test set also exist in the training set.
– 21.89% of the bibtex users in the test set also exist in the training set.
– The average number of tags assigned by a user to a single bookmark item in

the test set is 2.76.

78

5

– The average number of tags assigned by a user to a single bibtex item in the
test set is 3.25.

5 Proposed Recommender

Recommendations are required for every Si <user,item> pair in the TestTasFile.
In other words, we want to predict what tags a particular user would assign to
this particular item. Therefore, it is important to note that the recommenda-
tions should be personalized. Another important observation that arises from
the statistics mentioned in the previous section, is that items will probably not
appear in the test set but there is an important possibility that the users may re-
appear. Hence, the tag recommender should be able to exploit prior knowledge
about the item or the user but simultaneously be able to make recommendation
for unseen users and items. We tried to fulfill these requirements with our tag
recommender.

Our recommender works as follows (see Figure 1). The system checks if the
item (Bookmark or Bibtex) exists in the training set. If this is the case then the
(N) most popular tags for the item are suggested. If the item appears for the
first time then the system examines if the user has appeared before. If the user is
found, then the most popular tags for the user is the output of the recommender.
If neither the item nor the user have appeared before then the multilabel text
classifier is called to assign a relevant set of tags.

The classifier is taking into consideration the text representation of the item.
This can be the content and the title of the web page or the title and the ab-
stract of the bibtex item. The classifier as implemented in our framework takes
three parameters (see Figure 2) in order to classify an item. The first parameter
and main input is the text representation of the object. For the bookmark items
we obtained the description, extended description and content of the web
page. For the bibtex items, we kept the journal, booktitle, bitexAbstract
and title attributes. The second parameter is the maximum number of recom-
mendations (M) that the classifier will produce. However, the third parameter
(θ) will force the classifier to only recommend labels (tags) that is confident
enough.

We have used the Binary Relevance (BR) classifier from the Mulan2 package.
We have selected the BR classifier basically because it is a simple classifier that
scales linearly with the number of classes in a multilabel classification dataset.
The base learner used with BR was a naive Bayes classifier. We have set up one
classifier for the Bookmark items and one for the Bibtex Items.

In order to train the classifiers we had to convert the original data into
ARFF (Weka [17]) format. However, in order to decrease the dimensionality of
the problem, we kept only words with a minimum frequency fw(min) and tags
with minimum frequency of appearence ft(min). Therefore, in order to produce
datasets for the classifiers of reasonable sizes we have set f1

w(min) = 3000 and

2 Mulan - Multi Label Classification, (http://mlkd.csd.auth.gr/multilabel.html)

79

6

Data: The training set including a TasTrainFile, a BookTrainFile and a
BibTrainFile.

Input: The post Si(< user, item >) pair from the TasTestFile
Output: The prediction P = {t1, t2, . . . , tn} of the system, tiεT , where T is

the set of all available tags
initialize N1,N2;1

initialize θ1,θ2;2

initialize M1,M2;3

for All Si in TestTASFile do4

if Si.item is Bookmark then5

if Si.item appears in BookmarkTrainFile then6

P ← N1 most popular tags for Si.item;7

if P = ∅ then8

P ← bookClassifier(Si.item.getText(),θ1,M1);9

else10

if Si.user appears in TasTrainFile then11

P ← N1 most popular tags for Si.user;12

if P = ∅ then13

P ← bookClassifier(Si.item.getText(),θ1,M1);14

else15

P ← bookClassifier(Si.item.getText(),θ1,M1);16

if P = ∅ then17

P ← N1 most popular tags in BookmarkTrainFile18

if Si.item is Bibtex then19

if Si.item appears in BibtexTrainFile then20

P ← N2 most popular tags for Si.item;21

if P = ∅ then22

P ← bibClassifier(Si.item.getText(),θ2,M2);23

else24

if Si.user appears in TasTrainFile then25

P ← N2 most popular tags for Si.user;26

if P = ∅ then27

P ← bibClassifier(Si.item.getText(),θ2,M2);28

else29

P ← bibClassifier(Si.item.getText(),θ2,M2);30

if P = ∅ then31

P ← N2 most popular tags in BibtexTrainFile32

Fig. 1. Pseudocode of the proposed tag recommender

80

7

Input: Si: item to be classified, M: number of max recommendations, θ:
confidence threshold

Output: The prediction P = {t1, t2, . . . , tn} of the system, tiεT , where T is the
set of all available tags

P ← ∅;
C ← Classifier.getConfidences(T, Si.item.getText());
R ← rank C in descending order;
for (i = 0; i < M ; i++) do

if Ri > θ then
P = P Ri

return P

Fig. 2. Multilabel text classification at the proposed recommender

f1
t(min) = 300 for the bookmark file and f2

w(min) = 100 and f2
t(min) = 50 for the

bibtex file. These setting led to a bookmark arff file of 208 tags and 2150 words
and a bibtex file of 159 tags and 1836. Both datasets are available on-line at:
http://mlkd.csd.auth.gr/multilabel.html.

6 Evaluation

We used the f-measure as discussed in section 3 in order to evaluate the frame-
work and tune the parameters. Although we have tried various alternative set-
tings, we have not conducted an exhaustive study for parameter settings. Some
of the results obtained are presented in Table 2.

Table 2. F-measure values obtained for various parameter settings.

Parameters F-measure

θ M N All Book Bib
0.0 10 10 0.0716 0.0782 0.0633
0.0 5 5 0.0848 0.0940 0.0736
0.0 1 1 0.0700 0.0904 0.0453
0.9 10 10 0.0713 0.0752 0.066
0.9 3 3 0.0847 0.0940 0.0734
0.9 10 3 0.0852 0.0942 0.0740

We observe that the best overall results are achieved when θ = 0.9, M =
10, N = 3 3. Note that this is a setting providing 3 recommendations which
is close to the average number of tags assigned by the users, as observed in

3 In order to simplify the selection of parameter values we set θ = θ1 = θ2, M = M1 =
M2 and N = N1 = N2.

81

8

section 4. There was a slight improvement to these results when we used the
classifier to make predictions when the most popular tag set was empty (see
Figure 1), for example because of the removal of some tags from the training
set. A further small improvement was achieved when we used the most popular
tags in bookmarks and bibtex respectively when the classifier predictions where
empty. The final f-measures achieved were 0.0856, 0.0942, 0.0751 respectively.

7 Conclusions

We have tried to utilize a multilabel classification algorithm in order to build
an automated tag recommender for bibsonomy. Results show that tag recom-
mendation is indeed a challenging and interesting problem for the data mining
and machine learning community. Having more time we would like to test more
multilabel classification algorithms and apply multilabel feature selection.

Acknowledgements

This work was partially supported by a PENED program (EPAN M.8.3.1, No.
03Δ73), jointly funded by the European Union and the Greek Government (Gen-
eral Secretariat of Research and Technology/GSRT).

References

1. Marchetti, A., Tesconi, M., Ronzano, F.: Semkey: A semantic collaborative tagging
system. (2007)

2. Jäschke, R., Marinho, L.B., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag rec-
ommendations in folksonomies. In Kok, J.N., Koronacki, J., de Ma’ntaras, R.L.,
Matwin, S., Mladenic, D., Skowron, A., eds.: Knowledge Discovery in Databases:
PKDD 2007, 11th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases. Volume 4702 of Lecture Notes in Computer Science.,
Berlin, Heidelberg, Springer (2007) 506–514

3. Chirita, P.A., Costache, S., Nejdl, W., Handschuh, S.: P-tag: large scale automatic
generation of personalized annotation tags for the web. In: WWW ’07: Proceedings
of the 16th international conference on World Wide Web, New York, NY, USA,
ACM (2007) 845–854

4. Sood, S., Hammond, K., Owsley, S., Birnbaum, L.: TagAssist: Automatic Tag
Suggestion for Blog Posts. In: Proceedings of the International Conference on
Weblogs and Social Media (ICWSM 2007). (2007)

5. Li, T., Ogihara, M.: Detecting emotion in music. In: Proceedings of the Interna-
tional Symposium on Music Information Retrieval, Washington D.C., USA (2003)
239–240

6. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of
music into emotions. In: Proceedings of the 9th International Conference on Music
Information Retrieval (ISMIR). (2008)

7. Clare, A., King, R.: Knowledge discovery in multi-label phenotype data. In:
Proceedings of the 5th European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD 2001), Freiburg, Germany (2001) 42–53

82

9

8. Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with
multiple algorithms. In: Proceedings of the 10th Panhellenic Conference on Infor-
matics (PCI 2005), Volos, Greece (November 2005) 448–456

9. Roth, V., Fischer, B.: Improved functional prediction of proteins by learning kernel
combinations in multilabel settings. In: Proceeding of 2006 Workshop on Proba-
bilistic Modeling and Machine Learning in Structural and Systems Biology (PMSB
2006), Tuusula, Finland (2006)

10. Zhang, M.L., Zhou, Z.H.: Multi-label neural networks with applications to func-
tional genomics and text categorization. IEEE Transactions on Knowledge and
Data Engineering 18(10) (2006) 1338–1351

11. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification.
Pattern Recognition 37(9) (2004) 1757–1771

12. Kang, F., Jin, R., Sukthankar, R.: Correlated label propagation with application
to multi-label learning. In: CVPR ’06: Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, New York City,
NY, USA, IEEE Computer Society (2006) 1719–1726

13. Yang, Y.: An evaluation of statistical approaches to text categorization. Journal
of Information Retrieval 1 (1999) 67–88

14. McCallum, A.: Multi-label text classification with a mixture model trained by em.
In: Proceedings of the AAAI’ 99 Workshop on Text Learning. (1999)

15. Schapire, R.E. Singer, Y.: Boostexter: a boosting-based system for text catego-
rization. Machine Learning 39(2/3) (2000) 135–168

16. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining 3(3) (2007) 1–13

17. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, Second Edition (Morgan Kaufmann Series in Data Management Systems).
Morgan Kaufmann (June 2005)

83

Tag Recommendation for Folksonomies Oriented
towards Individual Users

Marek Lipczak

Faculty of Computer Science, Dalhousie University, Halifax, Canada, B3H 1W5
lipczak@cs.dal.ca

Abstract. Tagging has become a standard way of organizing informa-
tion on the Web, particularly in folksonomies – data repositories freely
created by communities of users. A few tags attached to each resource
create a bridge between heterogeneous data and users accustomed to
keyword-based search and browsing. To establish this connection, tag-
ging requires users to manually define tags for each resource they enter
to the system. This potentially time-consuming step can be eased by tag
recommender systems, which propose terms that users may choose to
use as tags. This paper suggests and evaluates potential sources of rec-
ommended tags, focusing on folksonomies oriented towards individual
users. These suggestions are used to propose a three-step tag recommen-
dation system. Basic tags are extracted from the resource title. In the
next step, the set of potential recommendations is extended by related
tags proposed by a lexicon based on co-occurrences of tags within re-
source’s posts. Finally, tags are filtered by the user’s personomy – a set
of tags previously used by the user.

1 Introduction

Folksonomy services allow users to store and share various types of Internet
resources. The content of folksonomies is completely defined by communities
of their users. Large number of creators and resources push the folksonomies
from the traditional hierarchical data structure design based on directories cre-
ated by system editors (e.g., Open Directory Project1) to tag-based taxonomies
defined jointly by service users (e.g., BibSonomy2, del.icio.us3, Flickr4, Techno-
rati5).While adding a resource to the system, users are asked to define a set of
tags – keywords which describe it and relate it to other resources gathered in
the system. To ease this process, some folksonomy services recommend a set of
potentially matching tags. Proposing a tag recommendation system was a task
of ECML PKDD discovery challenge 20086. This paper presents a tag recom-
mendation system submitted to the challenge.
1 http://www.dmoz.org/about.html
2 http://bibsonomy.org/help/about/
3 http://del.icio.us/about/
4 http://flickr.com/about/
5 http://technorati.com/about/
6 http://www.kde.cs.uni-kassel.de/ws/rsdc08/

84

The formal definition of folksonomy can be found in [6]. A folksonomy is a
collection of resources entered by users in posts. Each post consists of a resource
and a set of tags attached to it by a user. Generally, the resource is specific to
the user who added it to the system. However, for some types of resources (e.g.,
bookmarks) identical resources can be added to the system by different users.
In the latter case, by the set of resource tags we denote all tags attached to a
given resource by various users.

Folksonomies can be classified into two types based on the objective of the
tagging process. The first type, represented by BibSonomy and del.icio.us, treats
resources (e.g., personal bookmarks) as an individual property of a user. Here,
the aim of tags is to create a repository tailored to individual user interests. In
this paper, this type is referred to as folksonomies oriented towards individual
users. The second type of folksonomies, represented by Flickr and Technorati, is
a shared repository of public resources (e.g., blog entries). In this case tags are
added keeping in mind a broad audience that in the future would like to search
for the resource. In this paper, this type is referred to as folksonomies oriented
towards broad audience. As the reason of tagging a resource is fundamentally
different, we may expect that a tag recommendation system that suits one folk-
sonomy type would be inappropriate for the other. This paper focuses on the
first type, proposing a tag recommender for individual users.

2 Related work

The attention of researchers is mostly directed to tag recommendation systems
for broad audience folksonomies. TagAssist [12] is a system designed to recom-
mend tags of blog posts. The recommendation is built on tags previously at-
tached to similar resources. Earlier, meaning disambiguation is performed based
on co-occurrence of tags in the complete repository. Co-occurrence of tags was
also used by Sigurbjörnsson and van Zwol [11] to propose tags that complement
user-defined tags of photographs in Flickr.

The problem of tag recommendation in folksonomies oriented towards indi-
vidual users was addressed by Jäschke et al. [7]. They compared a number of
recommendation techniques including collaborative filtering, PageRank, and its
modification suited for folksonomies – FolkRank. The evaluation showed that the
FolkRank based recommender outperforms other approaches; however, the tests
were performed on a dense core of folksonomy, thus might be not representative.

Most of the tag recommendation systems are based on the tags that are al-
ready present in the system. An exception from this rule is the system presented
by Lee and Chun [9]. The system recommends tags retrieved from the content
of a blog, using artificial neural network. The network is trained based on sta-
tistical information about word frequencies and lexical information about word
semantics extracted from WordNet.

Schmitz et al. [10] proposed association rule mining as a technique that might
be useful in the tag recommendation process. The intuition behind this concept
was also used in the system presented by this paper.

85

3 Examined dataset

All presented experiments and the evaluation of proposed tag recommenda-
tion system were performed on a snapshot of BibSonomy [5] containing 2, 570
users, 242, 175 resources and 274, 139 posts (after preprocessing). The snapshot
was provided by the organizers of the ECML PKDD discovery challenge 2008.
The preprocessing phase included removing useless tags (e.g., “system:unfiled”),
changing all letters to lower case and removing non-alphabetical and non-numeri-
cal characters from tags.

The statistical characteristics of folksonomies have been an object of many
research publications [2, 3, 8, 11]. In the following sections I present experiments
particularly important from the perspective of the tag recommendation task.

3.1 General characteristics

The frequency distribution of tags from the Bibsonomy snapshot shows that mid-
and low-frequency tags follow Zipf’s distribution (Fig. 1). Zipf’s distribution does
not hold for high-frequency tags. The frequency distribution of tags from Flickr,
which represents folksonomies oriented towards broad audience shows important
differences [11]. Flickr’s low-frequency tags does not follow Zipf’s distribution.
A possible explanation of this fact is a smaller number of user specific tags
in comparison to folksonomies oriented towards individual users. In addition,
Flickr’s high-frequency tags follows Zipf’s distribution and are too general to be
used as recommendation. The list of the most frequent tags from Bibsonomy
(“software”, “web20”, “tools”, “web”, “blog”) shows that tag recommenders for
folksonomies oriented towards individual users should not ignore high-frequency
terms.

The difference between two folksonomy types may have impact on the effi-
ciency of applied tag recommendation methods. A commonly used collaborative
filtering approach is based on the intuition that the best recommendation con-
sists of tags attached to the resource by people similar to the user. This approach
proved its quality in many recommendation systems; however, the intuition be-
hind it can be deceiving. Folksonomies like BibSonomy or del.icio.us are mainly
designed as a collection of repositories of individual users. By adding posts, each
user defines his/her own set of used tags – personomy [6], which describes the
resources from a user’s point of view. As a result, users addressing similar re-
sources do not have to use similar tags, and similar personomies do not have
to be associated with similarity in tagged resources. In fact, there is no such
correlation in the processed BibSonomy snapshot. The cosine similarity between
users calculated based on tags seems to be uncorrelated with that calculated
based on resources (Fig. 2). In this situation recommending tags assigned to a
resource by similar users (collaborative filtering) should give similar results as
recommending the tags frequently attached to the resource by any user. This
conclusion seems to be confirmed by the experiment presented by Jäschke et
al. [7]. Minding the limitations of the collaborative approach I decided to focus
on a tag space that is directly related to a post.

86

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

fr
eq

u
en

cy

rank

Fig. 1. The overall frequency distribu-
tion of tags (after preprocessing and re-
moving posts classified as imported).

Fig. 2. Cosine similarity between each pair
of users calculated based on tags (tf-idf
weights) and resources (binary weights).
The two values seem to be independent.

3.2 Characteristics based on individual posts

Considering only the direct surrounding of the post, the potential tag recom-
mendations can be obtained from the resource itself, the set of tags attached
to the resource in previous posts, or the set of tags that were already used by
the user (user’s personomy). Exploiting tags from the resource depends on the
folksonomy character. In BibSonomy the resource can be a bibtex entry or a web-
page bookmark. The first contains bibliographic information about a research
publication including its title and abstract. The second contains web-page title
and URL. Preliminary experiments showed that using title words as tags outper-
forms the results of abstracts and URLs. The latter two contain lesser amount of
correct tags. The title is the only element that joins both resource types and it
is common in other folksonomies, which are its additional advantages. I decided
to use the title as the representation of resource.

To evaluate the three potential sources of tag recommendations, namely
words from the resource title, resource tags and user’s personomy, I checked
for each post if its tags can be found in any of these sources associated with all
other posts in the folksonomy. The quality of sources was measured by precision
(i.e., number of correct tags retrieved divided by the total number of retrieved
tags) and recall (i.e., number of correct tags retrieved divided by the total num-
ber of correct tags). These are standard information retrieval metrics [4]. The
value of recall was averaged over all tested posts. The averaged recall informs
us how many correct tags can be found in a source. The value of precision was
averaged only over posts, for which the source returned any tags. Precision av-
eraged this way is the ratio of correct tags among all tags retrieved. In addition,
I present the total number of potential tags obtained from the sources, and the
number of correct tags among them (Fig. 3).

User’s personomy is the richest source of correct tag recommendations. For
the tested BibSonomy snapshot it gave access to 90% of tags from test posts. On

87

��������	
���
���	
���

������
������

������
������

�������
���	�

���		�
��
���	

����
�
����	�	

������
	��
��

������
���	��

�����������
���������������

����������������������������	��

������������������������	��

���������	
���

��������	
���
���	
���

������
�������

������
��	�
��

������
������

�������
�����
�����

����	�

����

�����
�������

������
�������

�����	
��������
������������������

���������	
���

Fig. 3. Venn diagrams presenting average recall, plus the number of correct tags found
in three potential sources of tags (left) and average precision, plus the total number of
tags retrieved from these sources (right).

the other hand, correct tags from personomy are accompanied by a large num-
ber of incorrect tags (precision around 0.001). Compared to tags retrieved from
personomy, the recommendation based on resource title is much more precise;
however, the number of correct tags found this way is lower. In addition, most
of these tags can be also found in the user’s personomy. Finally, both recall and
precision values show that resource tags are not a good source of potential tag
recommendations. The character of each tag recommendation source and their
potential usability in tag recommendation system are discussed in the following
sections.

Resource title Resource title appears to be the most robust source of tag
recommendations. Among all posts in processed BibSonomy snapshot only 51
resource titles were unable to produce any tags (no letters or numbers in the
title). In addition, among all discussed sources the title seems to be the most
strongly related to the resource. The drawback of this source is low recall which
makes the title inappropriate as a stand-alone tag recommender. The title is a
simplified natural language sentence, which should be cleaned of words with no
informative value (e.g., stopwords).

Resource tags Tags assigned to the resource by other folksonomy users are
not a good source of tag recommendations. One of the reasons is the sparsity of
data; 92% of resources were added to the system only once. This fact significantly
limits the possible recall of this source of tags. The other issue is the personal
character of posts (discussed in section 3.1), which hurts the precision of retrieved
tags. The variety of tags attached by users creates, however, another application
of resource tag sets. Mining relations between tags attached to the same resource
can result in a simplified semantic lexicon. The lexicon would not give us the

88

information about the character of relation, but given a tag, the lexicon can point
out related tags which are also potential recomendations. The lexicon consists of
general relations between tags and can be used independently of the resources.
This fact reduces the negative impact of data sparsity. In addition, it is suited
for a particular folksonomy and it can capture specific relations between its tags.

Personomy tags Building his/her personomy the user is interested in repre-
senting his/her interests using a limited number of tags. The same tag will be
attached to resources fitting a particular interest, for example, all articles re-
lated to user’s master thesis will be tagged by the same keyword. In addition,
users are likely to stick with one lexical form of a word or expression, for ex-
ample using constantly singular or plural form of a noun (e.g., “publication” or
“publications”). These are the reasons why we are likely to find a lot of good
recommendations among user’s tags. The problem is that the choice of the lex-
ical form or the word that describes the interest is completely up to the user.
For the given example of resources related to master thesis the tag may be
“masterthesis”, “msc”, “thesis”, “work”, or any other that according to user’s
opinion conveys the information.

To describe the resource more accurately users pick additional tags, specific
not only to the user, but also to the resources. This is likely the cause of a large
number of low-frequency tags (see section 3.1) and complicates the process of
retrieving potential recommendations from personomy.

4 Tag recommendation system

The tag recommendation system (Algorithm 1), described in this section, is
based on observations from the presented statistical experiments. The system is
built of three steps. The first step produces tags from resource title words and
assigns a score that represents their usefulness for previously tagged resources.
The second step uses the resource tag based lexicon to propose tags related to
tags taken from the title. The third step checks the tags proposed by the lexicon
against user’s personomy. The tags recommended to the user are a union of most
promising tags produced in step one and three. The following sections give the
detailed description of each step.

Extraction of title based tags The resource title is divided into words, which
are then cleaned of non-alphabetical and non-numerical characters. The system
assigns a score to each word, which represents the probability of being chosen
as a tag – number of times being chosen as a tag divided by the number of
occurrences. If the word occurred in the titles of previously entered resources
less than 100 times its probability of being a correct tag is set to 0.1 which is
an empirically estimated value for low-frequency tags. The probability score is
introduced to reduce the impact of stopwords. It is important to notice that the
standard stopwords list, which is often used in information retrieval systems, is

89

Algorithm 1: Tag recommendation system
Data: a resource pres and user u
Result: a set of recommended tags TRecommendation, a tag consist of a keyword

(w) and recommendation score (score)
begin

/*Step 1 – Extraction of title based tags*/
WTitle ←− extractT itleWords(pres)
TTitle ←− ∅
foreach w ∈ WTitle do

TTitle add makeTag(w, getPriorUsefullness(w))

/*Step 2 – Retrieval of tags related to title*/
foreach t ∈ TTitle do

Tt Related ←− ∅
Tt RelTags ←− ∅// related tags from Tag-to-Tag lexicon

Tt RelT itle ←− ∅// related tags from Title-to-Tag lexicon

foreach r ∈ getRelated(lTagToTag, t) do
TtRelTags add makeTag(r.w, t.score ∗ getRelScore(lTagToTag, t, r))

foreach r ∈ getRelated(lTitleToTag, t) do
Tt RelT itle add makeTag(r.w, t.score ∗ getRelScore(lTitleToTag, t, r))

Tt RelTags ←− limitSize(TtRelTags, 20)
Tt RelT itle ←− limitSize(TtRelT itle, 20)
Tt Related ←− unionProb(Tt RelTags, Tt RelT itle)

TRelated ←− unionProb(Tt1 Related, . . . , Ttn Related)
/*Step 3 – Personomy based filtering*/
P ←− getPersonomy(u)
foreach t ∈ TRelated do

Tt RelPersonomy ←− ∅// tags retrieved from user’s personomy

if t ∈ P then
foreach r ∈ P do

Tt RelPersonomy add makeTag(r.w, t.score ∗ getRelScore(P, t, r))

TRelPersonomy ←− unionProb(Tt1 RelPersonomy, . . . , Ttn RelPersonomy)
TRelPersonomy ←− normalizeScores(limitSize(TRelPersonomy, 10))
TTitle ←− normalizeScores(TTitle)
TRecommendation ←− limitSize(unionProb(TTitle, TRelPersonomy), 10)

end

not sufficient here, because we have to deal with titles in various languages and
stopwords specific for the folksonomy (e.g., word “page” is frequent in web-page
titles, but it is rarely used as a tag).

Retrieval of tags related to title The most important element of this step
is the definition of the lexicon. It can be built based on two types of relations.
As introduced in section 3.2, the lexicon can be built based on tags attached to
the same resource, which are considered as related. The calculation of the factor
that represents the relation strength can be solved based on various approaches

90

(e.g., association rule mining). In the presented system the score for a tag t1
is the number of its co-occurrences with another tag t2 among all resources,
divided by the total number of occurrences of tag t1. The score is analogous to
the confidence score (Eq. 1) in association rule mining [1].

confidence(t1, t2) =
support({t1 ∩ t2})

support({t1})
(1)

Considering title words as the source of tags we can think of the second type
of the lexicon representing relations between the words extracted from resource
title and resource tags. The method of construction is analogical to the previous
lexicon, the only difference is that tag t1 is drawn from the title not the resource
tags.

Both lexicons present different perspective of tag relations and give silightly
different results (Table 1). The latter approach seems to be more adequate to the
input tags; however, it is biased for general words that are often used in the title.
For this type of words the related tags given by the second lexicon are simply
the most frequently used tags (Table 2). To avoid the need of disambiguation
between words more appropriate for either of the lexicons I decided to join the
list of related tags produced by both of them (limited to twenty tags). The scores
of tags that were present in both lists are summed as they were probabilities of
two independent events.

This step is performed independently for each tag extracted from the title.
Based on the lexicon the list of related tags with scores defining the strength of
relation is retrieved. Finally, the lists are joined. Scores of multiple occurrences of
identical tags are summed as they were independent probabilistic events, where
the probability is defined by the relation score. Tags related to a word that
is not likely to become a tag (e.g., “page”) are also not good candidates for
recommendation. These are very general terms which are hard to connect with
any concept. This is the reason why before joining the relation score is multiplied
by the title tag score computed in the previous step.

Tag-to-Tag lex. Title-to-Tag lex.
occurrence: 317 occurrence: 204

Tag Score Tag Score

1. semantics 1.000 semantics 0.392

2. semanticweb 0.306 semanticweb 0.348

3. ontology 0.177 semantic 0.313

4. semantic 0.167 folksonomy 0.215

5. semweb 0.158 tagging 0.196
Table 1. Top 5 tags related to “semantics”
according to two types of lexicon.

Tag-to-Tag lex. Title-to-Tag lex.
occurrence: 53 occurrence: 2439

Tag Score Tag Score

1. home 1.000 software 0.081

2. page 0.113 tools 0.073

3. software 0.094 computing 0.064

4. server 0.075 java 0.059

5. photos 0.056 opensource 0.051
Table 2. Top 5 tags related to “home”
according to two types of lexicon.

91

Personomy based filtering The set of tags retrieved in the second step is likely
to consist of a lot of correct recommendations. However, low precision caused
by the size of the set, makes its usefulness low. The last processing step is used
to filter the tags that are most likely to be chosen by a user. Checking the tags
against the user’s personomy allows the system to choose lexical forms preferred
by user (e.g., “semantics” instead of “semantic”). In addition, the personomy
gives access to user specific tags (e.g., “masterthesis”). The retrieval of related
tags is done analogously to the lexicon based approach used in the second step.
The strength of relation is calculated based on Eq. 1; however, now the set
of resources is limited to user’s own posts. It is important to notice that this
approach gives access not only to tags that are explicitly found in the personomy,
but also to tags that co-occurred with them in user’s posts. Subsequently, the
scores are multiplied by the relation score of the base tag, which was calculated
in the second step. Again the scores are calculated for each base tag separately
and then the lists of results are joined, summing scores of multiple occurrences of
the same tag in probabilistic way. The list of tags proposed as a recommendation
is limited to the ten tags with the highest score.

As mentioned in section 3.2, the objective of some tags is to describe the
resource, not to relate it to user’s interests. To give the user access to recom-
mendation of such tags, the system recommends also the tags retrieved from the
title in the first step. As scores defined in first and third step are not compara-
ble, I decided to normalize the scores in both lists, to make the sum of scores in
each list equal to one. After normalization the lists are joined, again using the
probabilistic sum and limiting the final list to ten tags.

5 Evaluation

This section presents the results of the off-line system evaluation based on the
available BibSonomy snapshot. The used evaluation approach assumed that all
and only relevant tags were given by the user. Although this method simplifies
the problem it is robust and objective. The used quality metrics were recall and
precision, commonly used in recommender system evaluations [4].

Methodology The commonly used evaluation approach is to keep strict divi-
sion between training and testing set. This approach was used by the organizers
of the ECML PKDD discovery challenge 2008. It allowed the organizers to keep
the list of correct tags in secret during the contest. However, assuming that a
user provides all and only relevant tags in a post, tag recommendation becomes a
specific problem in which the complete feedback about the quality of recommen-
dation is entered to the system with each post. In such case, we should consider
incremental way of evaluation in which each tested post trains the system with
tags provided by the user. The paper presents both evaluation approaches. The
first experiment followed strictly the approach proposed by the organizers of
the ECML PKDD discovery challenge 2008 – 59, 542 newest posts were used as
test set. In the second experiment, in addition to incremental training, I decided

92

to reduce the impact of posts imported from an external repository (e.g., web
browser), by not testing the system on groups of user’s posts with the same
timestamp. This limited the number of test posts to 7, 133. Imported posts have
their tags assigned automatically. In real use a tag recommender is not used for
the imported tags, therefore it should not be tested by them.

To give more insights about the system its final recommendation is presented
together with tags produced in each of its three steps. The first step, that simply
proposes words from the title as tags, can be considered as a baseline system.
Additional baseline systems presented are the recommenders that proposes most
frequent tags from user’s personomy and resource tags. As each approach returns
ranked list of tags it is possible to freely limit the number of recommended
tags. The plots (Fig. 4) present consecutive results for the top n tags, where
1 ≤ n ≤ 10.

Results The first experiment shows low quality of personomy based recom-
mendation, represented by the third step of the system and the baseline system
which proposes the most frequent user’s tags (Fig. 4(a)). This unexpected situa-
tion is caused by the evaluation approach used in this experiment (strict division
between training and testing set). Among 59, 542 tested posts only 16, 169 (27%)
were entered by users who have their previous posts in the training set. For the
rest of tested posts the personomy based recommenders could not propose any
tags. Clearly such large percentage of “first-time” users is not possible in reality,
thus this evaluation approach seems to underestimate the score of personomy
based recommenders. The results are also strongly biased by the choice of test
posts. Especially not representative is a single user that is responsible for 65%
of all test posts. His/Her posts are likely to be imported from an external repos-
itory. The tags in these posts look like being mechanically extracted from the
article content, which supports the recall result of the title based recommender
(first step of the system). The overall result of the system is therefore completely
determined by the tags proposed in the first step, that was not meant to be the
main element of the system.

The second evaluation approach, in which tested posts were used to train
the system, solves the problem of extraordinarily large number of “first-time”
users (3% of test posts). For this evaluation method personomy based recom-
mender (the third step) outperforms title based solutions (Fig. 4(b)). Low and
slowly decreasing (with increasing number of recommended tags) precision of
the baseline approach shows that most frequent tags from personomy are not
necessary a good recommendation. These results confirm previous experiments,
which showed that personomy is the richest, but noisiest source of tags. The title
also confirmed its usefullness as a source of tags. At some point increasing the
number of recommended tags does not improve precision and recall of the first
step – the number of words in the title hardly ever reaches 10. The results of
the second step are consistent with the first step for the top tags. Tags tend to
have high self-relation score which makes title base tags likely to be high in the
ranking produced by the second step. The results of the last baseline system,

93

the most frequent tags from the resource, confirmed that data sparsity greatly
reduces the usefullness of recommenders based on resource tags.

Considering only the top tags, the third step of the system seems to be more
precise than the overall system. It shows that the ranking method used to join
the results of first and third step should be improved. The advantage of joining
the results of these two steps is visible in the total recall of the overall system
(0.44 compared to 0.4 for the third step).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

o
n

Recall

complete system
personomy most frequent

resource most frequent
step 1
step 2
step 3

(a) Evaluation approach proposed by the
organizers of the ECML PKDD discovery
challenge 2008.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

o
n

Recall

complete system
personomy most frequent

resource most frequent
step 1
step 2
step 3

(b) Training set is iteratively enriched by
tested posts. Posts classified as imported
are not tested.

Fig. 4. Recall and precision of tag recommendation system compared to results of its
three steps, and two baseline systems: most frequent personomy and resource tags.

6 Conclusions and future work

The key conclusion of the presented experiments is that, when recommending
tags in folksonomies oriented towards individual users we should not rely only
on tags previously attached to given resource. Sparsity of data and individuality
of users greatly reduce their usefulness. Looking for potential tags we should
focus on the direct surrounding of the post, as in this type of folksonomies a
collaborative filtering approach may be deceiving. The presented tag recommen-
dation system tries to follow these directions starting with tags from the most
robust source – resource title, and expanding them by the richest source – user’s
personomy.

The introduced three steps of tag recommender system can be used as a ba-
sis of more sophisticated approaches. The element that potentially is the most
promising area of improvements is the folksonomy-based lexicon. In my future
research I plan to experiment with mining the relations between tags using tech-
niques from Data Mining (e.g., association rule mining) and Information Re-
trieval (e.g., PageRank algorithm). Specific characteristics of the dataset used

94

in system evaluation decrease its reliability. To confirm the results I plan to re-
peat the experiments on different folksonomies (e.g., del.icio.us). However, large
variance of results of two evaluation approaches points to the need for a unified
evaluation method that is representative of the real applications of tag recom-
menders, before new experiments are made.

References

1. Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. SIGMOD Rec., 22(2):207–216, 1993.

2. Ralitsa Angelova, Marek Lipczak, Evangelos Milios, and Pawel Pralat. Charac-
terizing a social bookmarking and tagging network. In Proc. of the ECAI 2008
Workshop on Mining Social Data (MSoDa), pages 21–26, 2008.

3. Ciro Cattuto, Christoph Schmitz, Andrea Baldassarri, Vito D. P. Servedio, Vittorio
Loreto, Andreas Hotho, Miranda Grahl, and Gerd Stumme. Network properties of
folksonomies. AI Commun., 20(4):245–262, 2007.

4. Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

5. Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Bib-
Sonomy: A social bookmark and publication sharing system. In Proc. the First
Conceptual Structures Tool Interoperability Workshop at the 14th Int. Conf. on
Conceptual Structures, pages 87–102, Aalborg, 2006. Aalborg Universitetsforlag.

6. Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Trend
detection in folksonomies. In Proc. First International Conference on Semantics
And Digital Media Technology (SAMT), volume 4306 of LNCS, pages 56–70, Hei-
delberg, dec 2006. Springer.

7. Robert Jäschke, Leandro Balby Marinho, Andreas Hotho, Lars Schmidt-Thieme,
and Gerd Stumme. Tag recommendations in folksonomies. In Knowledge Discovery
in Databases: PKDD 2007, 11th European Conference on Principles and Practice
of Knowledge Discovery in Databases, Warsaw, Poland, September 17-21, 2007,
Proceedings, volume 4702 of LNCS, pages 506–514. Springer, 2007.

8. Beate Krause, Robert Jäschke, Andreas Hotho, and Gerd Stumme. Logsonomy -
social information retrieval with logdata. In HT ’08: Proc. the 19th ACM conf. on
Hypertext and hypermedia, pages 157–166, New York, NY, USA, 2008. ACM.

9. Sigma On Kee Lee and Andy Hon Wai Chun. Automatic tag recommendation
for the web 2.0 blogosphere using collaborative tagging and hybrid ANN semantic
structures. In ACOS’07: Proc. the 6th Conf. on WSEAS Int. Conf. on Applied
Computer Science, pages 88–93, Stevens Point, Wisconsin, USA, 2007. WSEAS.

10. Christoph Schmitz, Andreas Hotho, Robert Jäschke, and Gerd Stumme. Mining
association rules in folksonomies. In Data Science and Classification (Proc. IFCS
2006 Conference), pages 261–270, Ljubljana, July 2006. Springer.

11. Börkur Sigurbjörnsson and Roelof van Zwol. Flickr tag recommendation based on
collective knowledge. In WWW ’08: Proc. the 17th international conference on
World Wide Web, pages 327–336, New York, NY, USA, 2008. ACM.

12. S.C. Sood, K.J. Hammond, S.H. Owsley, and L. Birnbaum. TagAssist: Automatic
tag suggestion for blog posts. In Proc. the International Conference on Weblogs
and Social Media (ICWSM 2007), 2007.

95

RSDC’08: Tag Recommendations using Bookmark
Content

Marta Tatu, Munirathnam Srikanth, and Thomas D’Silva

Lymba Corporation, Richardson, TX, 75080, USA
marta,srikanth,tsilva@lymba.com

Abstract. A variety of factors contribute to a tag being assigned by a user to a
document that he or she bookmarked. Textual information present in a URL’s ti-
tle, a user’s description of a document, or a bibtex field associated with a scientific
publication are sources for automatically recommending tags relevant for a given
bookmark. Lymba’s submission for the RSDC’08 Tag Recommendation task uses
document and user models derived from the textual content associated with URLs
and publications by social bookmarking tool users. This paper describes our nat-
ural language understanding approach for producing tag recommendations and
provides some initial results of our internal evaluation.

1 Introduction

Social bookmarking tools enable people to label content of interest with descrip-
tions from their own vocabulary which facilitate easy recall. When shared in a
collaborative setting, the bookmark labels enable users to discover new content
and other users with similar or shared interests. While user interests and their
vocabulary play a significant part in what is assigned as a label to a given doc-
ument, the content of the document is the driver of the bookmarking event and
the basis of the assigned labels and hence it provides automated systems im-
portant clues about the tags that can be assigned to a given document. Among
other advantages, automatic tag recommendations help bookmarking systems
manage the tag space and direct it towards the standardization of the labels that
users assign to documents in order to describe them.

For the RSDC’08 Tag Recommendation task, we used the textual content
associated with bookmarks to model documents (web pages and publications)
and users based on their tagging and suggest tags for new bookmarks. A combi-
nation of statistical and semantic features are used to build document and user
models. Section 2 presents the different “spaces” in which documents, book-
marks and users can be modeled and the process that generates these models.
The different methods used to recommend tags for bookmarks are discussed in
Section 3 followed by a description of the data processing that was performed on
the RSDC’08 training and test data sets to build a representation of bookmarks,

96

documents and users. The results of our experiments and our observations fol-
low.

1.1 Previous Work

Automatic labeling of documents based on predefined categories has been ex-
plored in document classification systems. The labels or categories are modeled
based on the terms extracted from content or document metadata. In social tag
prediction, the set of labels is not fixed and the explicit association of users to
documents adds additional dimensions to the classification or prediction prob-
lem. User’s preferences for tags based on their interests, workflow, etc. play an
essential part in the tags associated with content. Tags like myown are relevant
to a particular user and do not add value in collaborative settings.

A number of approaches to social tag prediction have used information re-
trieval methods to identify similar documents and recommend their tags for a
given document. AutoTag [1] suggests tags to weblogs based on the tags as-
sociated with other similar weblogs in a given collection. While this approach
depends on the content of the document, no new tag (from the content) is sug-
gested. Some approaches used the collaborative or social aspect of the data to
recommend tags based on user similarity. Recently, Heymann et al. [2] use a
large dataset of del.icio.us1 links to evaluate the effectiveness of using text and
inlinks information to model and predict tags for documents. A bag of words
model with TFIDF weighting of terms is used to represent the features and solve
tag prediction as a text classification problem. We use textual content associated
with bookmarks to model users and documents and suggest tags not only from
the existing tag space (generated from the training data), but also from the tex-
tual content associated with bookmarks.

2 Document and User Models

A bookmark bi is identified by the triple (ui, di, {tij}j) corresponding to “user
ui bookmarked document di by assigned it the set of tags {tij}j”. A bookmark
bi can be associated with its corresponding textual metadata. For instance, the
metadata of a web document di bookmarked by a user ui can include the actual
URL, its title and any user-given description. For scientific publications, this
metadata can include the title and author of the paper, the journal where the
paper was published, etc. In addition to metadata information provided by users
for their bookmarks, the textual content of bookmarked documents (di) can be
exploited. For scientific publications, this is the textual content of the paper.

1

97

Our system uses the textual content associated with bookmarks and documents
to model users and the documents they bookmark.

Given a bookmark that associates document d0 with user u0, the tag recom-
mendation problem can be solved by estimating the likelihood P (ti|d0, u0) of
a tag ti being assigned to the bookmark (u0, d0). The recommended tags can
exist in the tag space derived from the training data. However, concepts de-
rived from the content associated with both d0 and u0 can also be suggested
as tag recommendations. Joint modeling of documents and users in a common
feature space provides the desired tag ranking for our recommendation system.
For the RSDC’08 data, the textual content of the metadata provided for each
(user,document) pair is used to represent each bookmark. Therefore, the rep-
resentation of a document d0 becomes the union of the representations of all
its bookmarks {(ui, d0)}i (a document is modeled using the descriptions given
to the document by all users that bookmarked the document). Similar combi-
nations of bookmark representations provide the features needed to create user
models.

For the RSDC’08 Discovery Challenge, we used and evaluated different
feature representations depending on the data type and the adopted tag recom-
mendation approach. A suite of natural language processing tools were used
to understand the textual content associated with each bookmark (ui, di). We
extracted important concepts (nouns, adjectives and named entities) from the
textual metadata associated with each bookmark and used semantic analysis to
generate normalized versions of the concepts. The normalization process makes
use of different lexico-semantic resources, e.g., WordNet2 to stem the concepts
and link synonyms. For instance, the concepts European Union, EU, and Euro-
pean Community (in all their case variations) are normalized to the same con-
cept european union. By representing bookmarks, documents and users in the
concept space created by the concepts identified in all textual metadata as col-
lections of normalized concepts – each associated with a corresponding weight,
our tag recommendation system is able to suggest as tag recommendations con-
cepts that do not belong to the existing tag space.

In order to derive a common feature space to compare documents, users,
bookmarks and tags, we developed a conflation method for grouping tags into
semantically related groups of tags referred to as conflated tags. This process
of tag normalization takes care of spelling mistakes, abbreviations, joined con-
cepts and provides a common representation for synonyms. For instance, we-
blog is one of the conflated tags derived for the RSDC’08 data. It conflates
the following list of space-separated tags: blog Blog weblog blogs Weblog we-
blogs blog, BLOGS Blogs Weblogs bloga bloging blogs, weblogs, Blog. we-

2 http://wordnet.princeton.edu

98

blogs weblog blogs blog weblog blog to blog webology bl;ogs Blogs! ??blog
blogr Blogs, BLOG Blog”> Blog: blogblogs. The set of conflated tags define a
tag space that can be used to model bookmarks, documents and users. For this
purpose, we use the mapping between normalized concepts and conflated tags
provided by the underlying ontology (WordNet) to create a bookmark, docu-
ment and user representation within the existing tag space.

We note that our mechanism for normalizing concepts and conflating tags
was developed for the English language and has not been customized to han-
dle multi-lingual data. This is reflected in our tagging results for non-English
content and tags.

3 Recommending Tags for Bookmarks

Given the bookmark, document and user representations detailed in Section 2,
let us consider the following notations: for a bookmark bi = (ui, di, {tij}j)

– TH(bi) = the set of tag conflations derived for {tij}j – the tags assigned
by user ui to document di; TH(bi) ⊆ TagSpace,

– TC(bi) = bi’s representation in the concept space (the set of normalized
concepts evoked by bi’s textual content); TC(bi) ⊆ ConceptSpace, and

– TT (bi) = bi’s representation in the tag space (the set of conflated tags
evoked by bi’s concepts); TT (bi) = TC(bi)’s projection to the TagSpace;
TT (bi) ⊆ TagSpace.

For a document d0, TH(d0) = ∪iTH(bi), TC(d0) = ∪iTC(bi), and TT (d0) =
∪iTT (bi) where bi = (ui, d0, {tij}j) is a bookmark provided in the train-
ing data. Similar definitions can be derived for a user u0. We note that TC

and TT are independent of the tags that user ui assigns to document di. They
are solely based on the textual content that the user associates with the docu-
ment. Let us also denote TT (bi) ∪ TH(bi) by THT (bi) – the set of tags that
can be associated with bookmark bi. It includes the tags assigned by humans
as well as tags derived from the textual content of the bookmarked document.
THT (bi) ⊆ TagSpace.

3.1 Recommending Existing Tags

Given the models defined in Section 2 and the notations introduced above, tag
recommendations derived from the existing tag space for a given bookmark
(u0, d0) are generated by [THT (d0) ∩ THT (u0)] ∪ TT (d0, u0). These are ex-
isting tags evoked by the textual content of both d0 and u0. They may include
tags previously assigned to d0 by other users (if d0 is part of the training data,

99

TH(d0) �= ∅) or by u0 to other documents (if u0 is part of the training data,
TH(u0) �= ∅).

3.2 Suggesting New Tags

In order to recommend tags that do not currently exist in the tag space, we make
use of the document and user representations in the concept space. Therefore,
for a given bookmark (u0, d0), recommendations are generated using [THT (d0)
∩ THT (u0)] ∪ TC(d0, u0). Lymba’s submission for the RSDC’08 Challenge
made use of this tag recommendation mechanism.

4 Data Preparation and Processing

4.1 Experimental Data

For the RSDC’08 Challenge, we received bookmarking data from BibSonomy3,
a web-based social bookmarking system that enables users to tag web docu-
ments as well as bibtex entries of scientific publications. Brief statistics of the
data can be found in Table 1.

Table 1. RSDC’08 bookmarking data

Bookmarks Publications

Training 176,147 92,545
Average no. of tags 3.38 2.37

Test 16,195 43,348
Average no. of tags 2.12 2.27

Each bookmark was described by its URL (e.g., http://www.bibsonomy.org/),
a description of the URL (e.g., BibSonomy::home) that usually maps to its title
and an extended description of the bookmark (e.g., BibSonomy is a system for
sharing bookmarks and lists of literature.). We note that the user that is book-
marking a URL has complete control over the bookmark’s descriptions.

Each bookmarked publication is associated with values of bibtex fields such
as title, author, booktitle, journal, series, editor, publisher, volume, number,
pages, etc. In addition to this information, the entrytype, bibtexKey, bibtexab-
stract, and URL can be specified. The user can also input their own description
of the publication. Miscellaneous information is collected in the misc field. This
may include user comments, non-standard bibtex fields, e.g., isbn (1532-0626

3 http://www.bibsonomy.org

100

(print), 1532-0634 (electronic)), doi (10.1002/cpe.607), and bibdate (Mon Feb
25 14:51:24 MST 2002). For instance, one of the publications bookmarked by
user 26 is described by the information shown in Table 2.

Table 2. Bookmarked publication in BibSonomy

Title Temporal and real-time databases: a survey
Author G. Ozsoyoglu and R. T. Snodgrass
Journal Knowledge and Data Engineering, IEEE Transactions on
Volume 7
Number 4
Pages 513–532
Year 1995
EntryType article
BibtexKey ozso95
BibtexAbstract A temporal database contains time-varying data. In a real-time database transac-

tions have deadlines or timing constraints. In this paper we review the substantial
research in these two previously separate areas. First we characterize the time
domain; then we investigate temporal and real-time data models. We evaluate
temporal and real-time query languages along several dimensions. We examine
temporal and real-time DBMS implementation. Finally, we summarize major re-
search accomplishments to date and list several unanswered research questions

URL http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=404027
Misc - I’m not clear why temporal databases are used. Does Amazon use them? I

suspect they just annotate the row with a timestamp as needed. - paper surveys
variety of research, quite extensive. Tries to combine temporal dbs with real-time
dbs.

Description sdasda

4.2 Data Normalization

Bookmarks are described by their URL. Thus, we planned to use the url hash
information associated with each bookmark to identify the unique list of book-
marked webpages. However, multiple URLs can pinpoint to the same webpage.
Table 3 lists the different URLs found in the training data that identify the Bib-
Sonomy main webpage. Therefore, our data preparation process included an
URL normalization step that unified the bookmarked URLs.

As a result of this step, several bookmarks were merged into a single book-
mark to which we assigned the descriptions of the given bookmarks. For in-
stance, seven URLs bookmarked by user 1339 point to the same webpage (Ta-
ble 4). Clearly, user 1339 intended to bookmark different sections of the web-
page (he also bookmarked the entire page), however, using existing social book-
marking tools, users cannot explicitly bookmark portions of documents. In Ta-

101

Table 3. URLs describing BibSonomy

http://www.bibsonomy.org/
http://www.bibsonomy.org
http://bibsonomy.org/
http://bibsonomy.org

Table 4. Duplicate bookmarks were merged

User Id URL Tag(s)
1339 http://www.gehspace.com/arte26a30.htm#26 arte
1339 http://www.gehspace.com/arte26a30.htm#27 arte
1339 http://www.gehspace.com/arte26a30.htm#28 arte
1339 http://www.gehspace.com/arte26a30.htm#inicio arte
1339 http://www.gehspace.com/arte26a30.htm#29 arte
1339 http://www.gehspace.com/arte26a30.htm#30 arte
1339 http://www.gehspace.com/arte26a30.htm arte

1339 http://www.gehspace.com/arte26a30.htm arte

ble 4’s last row, we display the bookmark that unifies the seven (URL,tags)
pairs.

A similar unification process was performed on the set of bookmarked pub-
lications. For publications, we used the simhash1 field information. In Table 5,
we display one example.

Table 5. Duplicate publications were merged

User Id Publication Tag(s)

82 Title: How triadic diagrams represent conceptual struc-
tures, Author: Klaus Biedermann, Series: LNAI

triadic formal concept lattices
analysis fba begriffsanalyse
forschungsgruppe tu ag1 for-
male darmstadt fca

82 Title: How Triadic Diagrams Represent Conceptual
Structures, Author: K. Biedermann, Series: Lecture
Notes in Computer Science

FCA OntologyHandbook

82 Title: How Triadic Diagrams Represent Conceptual
Structures, Author: K. Biedermann, Series: LNAI

FCA OntologyHandbook

82 Title: How triadic diagrams represent conceptual struc-
tures, Author: Klaus Biedermann, Series: LNAI, Lecture
Notes in Computer Science

triadic formal concept lattices
analysis fba begriffsanalyse
forschungsgruppe tu ag1 for-
male darmstadt fca ontology-
handbook

A second preprocessing stage was performed for all publications whose
misc field was comprised of (field,value) pairs. A manual review of all bib-

102

tex fields stored in misc by one of the authors of this paper resulted in a map
that augments the existing information stored for a publication. For instance,
the values stored within misc for the field name englishtitle were added to the
title information. Similarly, the confname values augmented the booktitle in-
formation. However, not all bibtex fields stored within misc could be mapped
to already existing columns. Therefore, new fields were generated and popu-
lated with the corresponding values as stored in the misc field. Among the new
columns, we have classification, contents, keywords, review, subject, topic, and
others.

Given that we had this rich meta information for only some of the pub-
lications, we attempted to fill the missing information by exploiting the data
that digital libraries such as ieeexplore.ieee.org, portal.acm.org, or sciencedi-
rect.com provide for the publications that they host. Thus, for any publication
whose URL pointed to one of these websites, we downloaded the html files,
parse them, extracted any piece of information that belonged to the publica-
tion’s metadata and stored them in the corresponding bibtex fields. We note that
the html files downloaded from these resources have a uniform structure and
can be easily parsed.

An additional data preparation step was required for the RSDC’08 data.
Most of the textual information that is associated with scientific publications
contains LATEX markings. By removing these markings, each publication was
associated with plain text that can be accurately processed by our natural lan-
guage processing tools.

4.3 Data Processing

As mentioned in Section 2, each bookmark is associated with the textual con-
tent of the metadata that accompanies it and certain concepts are derived from
each piece of information. However, the importance of the identified concepts
differs from column to column. For instance, the concepts derived from a publi-
cation’s address field are less important than one ones derived from the journal
information which are less important than the title concepts when it comes to
the concept’s likelihood to become a tag assigned to the document. Therefore,
when we aggregated the concept information for a bookmark for the purpose
of deriving the bookmark’s representation in the concept space (TC(bi)), we
used various field weights that denoted the importance of the field. For Lymba’s
RSDC’08 submission we used a set of heuristics to assign weights to the dif-
ferent fields that describe the URLs and the publications. However, we plan to
learn these weights from the training data within a machine learning framework.

103

5 Experiments and Observations

For the RSDC’08 challenge, we normalized the test data according to the pro-
cessing described in Section 4.2. For the testing bookmarks/publications that
mapped to bookmarks existing in the training data, we returned the tags assigned
to these bookmarks according to the training data. 602 bookmarks/publications
were tagged by this process with a maximum average F-measure of 96.95% (at
top 1) and a minimum average F-measure of 96.70% (at top 2).

5.1 Results

In Table 6, we show the performance of the system on the RSDC’08 testing data.
The highest F-measure (21.33%) is achieved for the top 5 tag recommendations
with the highest precision at top 1 and highest recall at top 10. Our measures
of the system’s performance on the two types of bookmarks (URLs and publi-
cations) – also shown in Table 6 – releaved a significant difference between the
quality of the tag recommendations made for a publication (highest F-measure –
at top 5 – is 27%) and the quality of the recommendations made for a bookmark
(highest F-measure : 7%).

Table 6. Performance on the test data (average recall, precision and f-measure over the testing
bookmarks/publications for the top N tag recommendations – N ∈ {1, . . . , 10}). Performance
numbers are shown for the entire test data, only for bookmarks, and only for publications.

Top N Recall Precision F-measure

1 0.2062 : 0.0700 / 0.2572 0.2062 : 0.0700 / 0.2572 0.2062 : 0.0700 / 0.2572
2 0.2089 : 0.0656 / 0.2625 0.1892 : 0.0629 / 0.2365 0.1986 : 0.0643 / 0.2488
3 0.2515 : 0.0665 / 0.3207 0.1749 : 0.0586 / 0.2185 0.2063 : 0.0623 / 0.2599
4 0.3005 : 0.0684 / 0.3873 0.1635 : 0.0537 / 0.2046 0.2118 : 0.0601 / 0.2678
5 0.3468 : 0.0717 / 0.4497 0.1540 : 0.0502 / 0.1929 0.2133 : 0.0591 / 0.2700
6 0.3894 : 0.0745 / 0.5072 0.1460 : 0.0469 / 0.1830 0.2123 : 0.0575 / 0.2690
7 0.4266 : 0.0792 / 0.5565 0.1389 : 0.0457 / 0.1737 0.2096 : 0.0579 / 0.2648
8 0.4592 : 0.0816 / 0.6004 0.1322 : 0.0437 / 0.1653 0.2053 : 0.0569 / 0.2592
9 0.4865 : 0.0844 / 0.6369 0.1257 : 0.0424 / 0.1569 0.1998 : 0.0564 / 0.2517
10 0.5073 : 0.0860 / 0.6649 0.1193 : 0.0412 / 0.1485 0.1932 : 0.0557 / 0.2428

A closer look at the set of 16,194 bookmarks given in the test dataset re-
vealed 9,183 bookmarks were assigned a single tag (indexforum) which was not
among the top 10 tag recommendations returned by our system. These book-
marks are various articles from http://forum.index.hu. Table 7 displays three of
these bookmarks. The tag assigned to these URLs can be derived from their
common URL. However, our system recommends the concepts it identified in

104

the bookmark’s content without joining them. For instance, our tag recommen-
dations for the second URL shown in Table 7 are tft, monitorok, forum, article,
la, index, 9156398, hu, and 78013830.

Table 7. Quality of out-of-tag-space recommendations and in-tag-space recommendations mea-
sured on the test data

URL Title

http://forum.index.hu/Article/showArticle?t=9096213&la=73045864 tomor, szines pro-
gramozasi nyelv

http://forum.index.hu/Article/showArticle?t=9156398&la=78013830 TFT monitorok
http://forum.index.hu/Article/showArticle?t=9013231&la=34610778 Temetni jottem a Linuxot,

nem dicserni!

We evaluated the system’s performance on the test data from which we elim-
inated the 9,183 URLs from http://forum.index.hu. The performance, as it can
be seen in Table 8, improves by 4% (F-measure of top 5 tag recommendations).
Our immediate plans are to expand our system to include joined concepts in the
tag recommendations that it makes.

Table 8. System performance on the test data excluding the http://forum.index.hu bookmarks

Top N Recall Precision F-measure

1 0.2062 / 0.2439 0.2062 / 0.2439 0.2062 / 0.2439
2 0.2089 / 0.2470 0.1892 / 0.2238 0.1986 / 0.2348
3 0.2515 / 0.2974 0.1749 / 0.2069 0.2063 / 0.2440
4 0.3005 / 0.3554 0.1635 / 0.1934 0.2118 / 0.2505
5 0.3468 / 0.4101 0.1540 / 0.1822 0.2133 / 0.2523
6 0.3894 / 0.4605 0.1460 / 0.1726 0.2123 / 0.2511
7 0.4266 / 0.5045 0.1389 / 0.1642 0.2096 / 0.2478
8 0.4592 / 0.5431 0.1322 / 0.1563 0.2053 / 0.2428
9 0.4865 / 0.5754 0.1257 / 0.1486 0.1998 / 0.2363

10 0.5073 / 0.6000 0.1193 / 0.1411 0.1932 / 0.2285

The difference in the system’s performance on the bookmark data as op-
posed to the test publications (Table 6) may also be cause by the difference in
textual content that the system associated with each bookmark/publication. The
bibtex entries were much richer in textual content when compared with the URL
descriptions.

105

5.2 Impact of Tag Space Expansion

Our approach to tag recommendations (described in Section 3) enables us to
limit our suggestions to the existing tag space as well as expand the set of tag
recommendations to include concepts the were not previously assigned as tags.
In this section, we show the impact that the process of recommending out-of-
tag-space concepts had on the performance of our system. In Table 9, we show
the performance of the system when we limited the tag recommendations to the
tag space generated based on the training data. The highest F-measure, 10.04% –
achieved for the top 4 tag recommendations, is significantly smaller when com-
pared with the system’s F-measure when it recommends concepts that do not
exist in the current tag space. The understanding of the bookmark/publication’s
content (the textual information that accompanies the URL/publication) doubles
the quality of the tag recommendations.

Table 9. Quality of out-of-tag-space recommendations and in-tag-space recommendations mea-
sured on the test data

Top N Recall Precision F-measure

1 0.2062 / 0.0927 0.2062 / 0.0927 0.2062 / 0.0927
2 0.2089 / 0.0935 0.1892 / 0.0868 0.1986 / 0.0900
3 0.2515 / 0.1137 0.1749 / 0.0842 0.2063 / 0.0968
4 0.3005 / 0.1345 0.1635 / 0.0801 0.2118 / 0.1004
5 0.3468 / 0.1498 0.1540 / 0.0748 0.2133 / 0.0998
6 0.3894 / 0.1600 0.1460 / 0.0693 0.2123 / 0.0967
7 0.4266 / 0.1660 0.1389 / 0.0639 0.2096 / 0.0922
8 0.4592 / 0.1696 0.1322 / 0.0593 0.2053 / 0.0879
9 0.4865 / 0.1718 0.1257 / 0.0557 0.1998 / 0.0842

10 0.5073 / 0.1732 0.1193 / 0.0531 0.1932 / 0.0813

6 Conclusion

In this paper, we briefly describe Lymba’s approach for generating tag rec-
ommendations for bookmarks/publications. We exploit the textual content that
can be associated with bookmarks, documents and users and generate models
within the concept space or the existing tag space. Using these rich models, our
tag recommendation system is able to suggest various concepts as tags for a
given bookmark. The quality of the tag recommendations generated from con-
cept space (without being constrainted to the tag space produced by the training
data) exceeds by far the appropriateness of the tags suggested from the current
tag space.

106

Further analysis is required to identify which features contribute and by how
much, towards a particular tag. The semantic relation between the tags in the tag
space can be exploited to obtain better weighting of tags and improved models
for documents and users.

Our future work will focus also on designing an “adaptive tag recommenda-
tion” system which uses the chronology of the bookmarking events to grow the
tag space and learn from all previously stored bookmarks.

References

1. Mishne, G.: Autotag:a collaborative approach to automated tag assignment to weblog posts.
In: Proceedings of WWW’06, Edinburgh, Scotland (2006)

2. Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: Proceedings of
SIGIR’08, Singapore (2008)

107

Author Index

Bogers, Toine . 1

Chen, Ling . 38
Chevalier, Jean-François21

D’Silva, Thomas 96

Gkanogiannis, Anestis 13
Gramme, Pierre 21

Hwang, Kyu-Baek32

Kalamboukis, Theodore 13, 47
Katakis, Ioannis75
Kim, Chanju . 32
Krestel, Ralf . 38
Kyriakopoulou, Antonia 47

Lipczak, Marek 84

Madkour, Amgad 55

Neubauer, Nicolas 63

Obermayer, Klaus 63

Srikanth, Munirathnam 96

Tatu, Marta .96
Tsoumakas, Grigorios 75

van den Bosch, Antal1
Vlahavas, Ioannis 75

Keyword Index

BibSonomy .1

Classification .55
classification . 47
clustering . 47
cooccurrence analyis 63

feature selection 32
Features selection 21
folksonomy .84

Graph Model . 38

information retrieval 1

language modeling 1
LARS . 21
Link Analysis . 38

machine learning 32
multilabel classification75
mutual information 32

naive Bayes classifiers 32
natural language processing 96
network analysis 63

personomy . 84

recommendation 84
Ridge regression21

Semantic Features55
social bookmarking 1,32
spam detection 1,47,63
supervised learning 13

tag .84
tag normalization 96
tag recommendation75,96
tag suggestion .75
tagging . 63
text classification 13,63,75

understanding bookmark content . . 96

Variable recoding 21
Very large scale problem 21

View publication statsView publication stats

https://www.researchgate.net/publication/239632876

	preface.pdf
	ECML PKDD Discovery Challenge 2008 0.1cm(RSDC'08)
	

