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Abstract: DNA methylation is the most studied epigenetic trait. It is considered a key factor in
regulating plant development and physiology, and has been associated with the regulation of several
genomic features, including transposon silencing, regulation of gene expression, and recombination
rates. Nonetheless, understanding the relation between DNA methylation and recombination rates
remains a challenge. This work explores the association between recombination rates and DNA
methylation for two commercial rice varieties. The results show negative correlations between
recombination rates and methylated cytosine counts for all contexts tested at the same time, and
for CG and CHG contexts independently. In contrast, a positive correlation between recombination
rates and methylated cytosine count is reported in CHH contexts. Similar behavior is observed when
considering only methylated cytosines within genes, transposons, and retrotransposons. Moreover, it
is shown that the centromere region strongly affects the relationship between recombination rates
and methylation. Finally, machine learning regression models are applied to predict recombination
using the count of methylated cytosines in the CHH context as the entrance feature. These findings
shed light on the understanding of the recombination landscape of rice and represent a reference
framework for future studies in rice breeding, genetics, and epigenetics.

Keywords: epigenetic; DNA methylation; bisulfite sequencing; machine learning; modeling

1. Introduction

Meiotic recombination is recognized as a key process in genetics. During this process,
maternally and paternally inherited homologous chromosomes exchange information by
gene conversion or crossing over to create novel allelic combinations. Recombination
is widely recognized for its role in promoting diversity to respond to continually shift-
ing environments, in addition to preventing the build-up of genetic load by decoupling
linked deleterious and beneficial variants [1]. However, meiotic recombination between
homologous chromosomes is restricted by the number and location of crossover sites per
chromosome. The crossover distribution and frequency along the genome are uneven,
especially in plants [2]. Sites with high recombination rates have been linked to subtelom-
eric regions that are generally hypomethylated and have high gene and DNA transposon
frequencies. In contrast, recombination is suppressed in the centromeric region, which is
characterized by high frequencies of long terminal repeat retroelements and few genes [3].

The role of chromatin structure and DNA methylation in determining recombination
rates has been previously reported. For example, high levels of histone H3 acetylation in
Arabidopsis mutants were associated with changes in the crossover frequencies [4]. Like-
wise, studies using met1 and ddm1 mutants, which are globally hypomethylated, showed
regional remodeling of crossover frequencies with increased recombination in chromosome
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arms and decreased recombination in the pericentromeric region [5,6]. However, under-
standing how the DNA methylation patterns affect the recombination rates remains an
open challenge.

In plants, DNA methylation occurs at cytosine nucleotides in all the sequence contexts
CG, CHG, and CHH (H = C, T, or A). DNA methylation is a stable mark inherited from
generation to generation and a crucial factor for plant development [7]. DNA methylation,
in combination with histone and non-histone protein modifications, defines chromatin
structure and accessibility, which helps to regulate gene expression, transposon silencing,
chromosome interactions, and trait inheritance [8]. Several studies have shown that sexual
reproduction in plants involves the reprogramming of DNA methylation patterns [9].

The methylation dynamics for each sequence context is determined by different mech-
anisms and related to specific biological functions [8]. The maintenance mechanism of
plant DNA methylation depends on the context and is mediated by different enzymes.
For example, in Arabidopsis thaliana, CG cytosine methylation is maintained by MET1, in
a semiconservative manner in the DNA replication process, while CHG methylation is
maintained by CMT3 and CMT2, which enables the propagation of methylation through a
positive feedback loop together with the H3K9me2 in the cell division process. Meanwhile,
CHH methylation is maintained by DRM2 or CMT2, depending on the genomic region [8].
De novo methylation is carried out by CMT2 for CHG and CHH context [9], and the RdDM
pathway for all sequence contexts [9]. This process is not the same for all plants. In rice, CG
cytosine methylation is carried out by two related genes OsMET1-1 and OsMET1-2, with
a possible redundant function, while OsCMT3a is the only functional ortholog of CMT3
involved in CHG methylation during replication. For CHH methylation, no associated gene
has yet been reported. There is some evidence that suggests that OsCMT2 is closely related
to CMT2 and may play a role in CHH methylation [10]. More research on methylation and
demethylation events and their precursors will be necessary to clarify these mechanisms.

Identifying factors influencing the meiotic recombination rates is important for breed-
ers interested in transferring genes from one variety to another through crosses. Thus,
developing new allelic combinations that allow breeders to meet the needs present in
agricultural systems. Recently, a number of studies have addressed this issue and have
developed different types of strategies to discover where crossovers occur most frequently
and try to predict them. For example, Liu et al. [11] developed a predictor of recombination
hot/cold spots in yeast using a machine learning approach combined with principal com-
ponent analysis. Moreover, Demirci et al. [12] explored DNA sequence and shape features
to train machine learning models for predicting crossover occurrence in Arabidopsis, maize,
tomato, and rice. Moreover, Adrion et al. [13] used recurrent neural networks, a deep
learning method for estimating genome-wide recombination in a natural population of
African Drosophila melanogaster.

In recent years, rice has been a model monocotyledonous plant for understanding the
methylation process because it is highly homozygous and self-pollinating. In addition, rice
is of great importance in food security since half of the world’s population depends on it as
daily food [14]. However, few studies have analyzed methylation patterns in relation to
recombination rates in rice. For instance, Habu et al. [15] developed an experiment crossing
methylated and unmethylated rice varieties and concluded that the position and frequency
of meiotic recombination in rice centromeric heterochromatin are regulated by the epige-
netic state of the chromatin. Likewise, Choi et al. [16] explore how transposable elements
interact with host plant epigenetics. They suggest that high levels of methylation at these
elements have a role in suppressing deleterious ectopic recombination. Nevertheless, none
of these studies have explored in detail how the methylation contexts are related with
recombination rates.

In this work, the relationship between chromosomal recombination rates and different
methylation contexts is explored by using Oryza sativa as a model. The focus is on the
following objectives: (1) To estimate the correlation between recombination and methylation
in all contexts, (2) to describe the effect of methylation within genes, transposons, and
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retrotransposons with respect to recombination, and (3) to implement a machine learning
model to predict recombination based on methylation data. The results provide evidence
that recombination can be described by methylation in the context of CHH, regardless of
whether it is outside or inside genes, transposons, and retrotransposons. Consequently,
the use of machine learning models to predict chromosomal recombination rates in rice
cultivars using CHH methylation is proposed.

2. Results and Discussion

In this study, the correlation between recombination rates and the methylated cytosine
counts for all chromosomes in two rice cultivars is evaluated (Figures 1 and 2). The
correlation values are, on average, −0.44 ± 0.17 for all chromosomes of both varieties, with
higher values in the centromere region. Similar results in rice were previously described
by Yan et al. [17], revealing that DNA methylation patterns in the centromere are shaped
by the DNA sequence and the centromeric domains. Habu et al. [15] described how
artificial chromatin modification can vary the frequency of meiotic recombination. Overall,
high levels of methylation in heterochromatin regions near the centromeres have been
reported as a common pattern, where meiotic recombination is repressed. In the same
way, recombination-free regions around centromeres are likely to be important for normal
centromere function during meiosis [15,18].

By evaluating the CG and CHG methylation contexts independently, a decrease in
recombination rates with increasing methylated cytosines is reported. On the contrary,
methylated cytosines in the CHH context increase with recombination rates showing a
positive correlation (Figure 3). The opposite relationship between the methylation contexts
of CG and CHH has been reported in rice by Li et al. [19], who identified the tendency
towards hypermethylation in CG context, but hypomethylation in CHH.

The positive correlation between methylated cytosine count and recombination rates
observed in the context of CHH is not clear when all methylation contexts are assessed
together because the total number of methylated cytosines in the CG and CHG contexts was
higher. This trend is observed for both varieties, IR64 and Azucena, where the methylation
data and the alignment process have been obtained independently. The positive relationship
between the CHH methylated cytosine count and recombination rates has been reported
by Rodgers-Melnick et al. [1], who include the CHH methylation as a feature of a linear
model to predict recombination in maize. It is unclear what role methylated cytosines play
in the CHH context with respect to recombination.

Variability in DNA methylation can be heritable or reversible, and this can allow for
phenotypic variation and rapid response to environmental changes. Even the degree of
intraspecies epigenomic diversity can be correlated with climate and geographic origin [10].
It has been reported that CHH methylation could be related to fruit size in apples [20] and
silencing transposons in sugar beets [21]. A potential role in A. thaliana seed dormancy,
with increases in CHH methylation in seeds during seed development and a decrease
during germination, has also been reported in [8]. These observations suggest the multiple
roles that CHH methylation can play in plant genomes. Recently, Wang et al. [22] reported
that CHH methylation levels are higher in rice reproductive organs, such as panicles and
pistils, than in seedlings, suggesting a positive feedback loop between DNA methylation
and RNA-directed DNA methylation activity involved in sexual reproduction.

The functional analysis performed with annotation data of genes, transposons, and
retrotransposons for each variety, shows that the increment in the number of genes
per window is correlated with recombination rates in the chromosomes of both vari-
eties (Figures 4 and 5). This positive trend has been previously evidenced in Drosophila,
A. thaliana, yeast, finches, monkeyflowers, and dogs, with recombination hotspots typically
located near the promoter regions of genes [23] and observed in the euchromatic regions
of maize [24]. In contrast, a negative correlation between the number of transposons and
retrotransposons has been found with respect to recombination rates across all chromo-
somes for both rice varieties. This can be explained by the abundance of such elements
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near the centromere where recombination rates are low. Similar results have been found
by Tian et al. [25], who suggested that the rice genome is organized along recombinational
gradients due to the negative correlation of recombination with transposable elements and
positive one with gene densities.
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Figure 1. Recombination and methylated cytosines through Chromosome 1 for the rice varieties IR64
and Azucena. The centromere is represented by a red dotted line and the influence of the centromere
region by solid red lines.

Recombination tends to occur within and near genes and away from transposable
elements. This may reflect the passive effects of recombination initiating in open chro-
matin [23]. Recent analyses of the localization of recombination at the fine scale tend to
show negative correlations with local densities of repetitive elements. Actually, strong
recombination suppression and a large accumulation of transposable elements are usual
in pericentromeric regions [23]. For rice, this pattern is shared between japonica and indica
groups [25]. There remains uncertainty about the directionality of cause and effect, the
extent to which the correlation is driven by associations of both recombination and trans-
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posable elements with other factors, or why patterns differ among species and types of
repetitive elements [23].
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Figure 2. Correlations between recombination rates and the count of methylated cytosines for rice
varieties IR64 and Azucena. Blue and red colors correspond to positive and negative correlations,
respectively. The higher the correlation value, the higher the color intensity.

The count of methylated cytosines is assessed within genes, transposons, and retrotrans-
posons and compared to recombination rates (Supplementary Materials Figures S1 and S2).
The analysis shows that methylated cytosine count in genes, transposons, and retrotrans-
posons is negatively correlated with recombination rates when evaluated for all contexts
together (Supplementary Materials Figure S3). This indicates that methylation inside these
entities is higher when recombination is lower. The same negative trend is observed when
methylated cytosines are analyzed in CG and CHG contexts. Methylation events in trans-
posons and retrotransposons are associated with the prevention of their expression and
movement in chromosomes, which can be damageable to the organism and even deleteri-
ous [23,26]. It should be noted that these methylation events can also affect surrounding
genomic regions [26], potentially influencing the methylation status of nearby genes. In
genes, methylation usually occurs at the promoters or within the body of the transcribed
gene, inhibiting their expression [8]. However, the methylated cytosines in the CHH context
are also positively correlated with the recombination rates. This is a consequence of low
CHH methylation near the centromere region and greater presence in the chromosome arms.
Gallo-Franco et al. [27] reported high CHH methylation levels of transposable elements
close to genes in rice, which supports the conclusion of Martin et al. [28] for grass species
that long genes and genes close to transposable elements tend to have CHH islands more
frequently. It could be hypothesized that the presence of these CHH islands is promoting
the positive correlation between methylation and recombination in gene-rich regions.

Chromosomal regions close to the centromere have a high incidence on methylation.
When only the chromosome arms are evaluated, correlation trends change, from being
high negative to being negative, for all contexts evaluated together and for the CG and
CHG contexts evaluated independently (Figure 6). For CHH methylation, the markedly
positive correlation also decreases but is still positive. In the context centromere regions
are evaluated, negative correlations are evidenced in all contexts when they are evaluated
together and for CG and CHG contexts independently. These results are in agreement
with the reported importance of DNA methylation for plant chromosomal interactions in
pericentromeric regions [9]. They also agree with the results obtained by Habu et al. [15],
who indicate that the position and frequency of meiotic recombination in the centromeric
heterochromatin of rice are regulated by the epigenetic state of the chromatin. With respect
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to methylation in CHH contexts, the correlation of the centromere region is positive but
weaker than that of the whole chromosome (Figure 6).
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Figure 3. Distribution of methylated cytosines in CHH context in the twelve rice chromosomes for
the IR64 and Azucena varieties, in comparison with the chromosomal recombination between these
two varieties. The centromere is represented by a red dotted line and the influence of the centromere
region in recombination by solid red lines.

The contributions of methylation in CG, CHG, and CHH contexts to predict recombi-
nation as features of machine learning models are assessed using the Shapley package. The
results show a great contribution of CHH for the prediction of recombination and a low
contribution of CG and CHG for both varieties (Figure 7). This agrees with the fact that the
CHH context has the highest correlation values with respect to chromosome recombination
rates, while the CG and CHG contexts have lower correlations. The Shap summary plot
also shows the same trend, evidencing the strongest effect on recombination when the
CHH values are higher.
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Subsequently, the methylated cytosine count in the CHH context is used as a unique
feature to evaluate regression algorithms of machine learning, because the performance
of the model decreases when the other features are considered. The evaluation is carried
out independently for each variety using the Lazy Predict package. The results show that
the Extra Trees algorithm performed the best prediction (R2 = 0.57, RMSE = 0.01 for IR64;
R2 = 0.69, RMSE = 0.01 for Azucena). Thus, this algorithm is used to develop the training
and subsequent predictions.

Predictions on Azucena’s chromosomes, by training the Extra Trees algorithm with
information from IR64, give an R2 of 0.32 ± 0.13 and an MSE of 0.02 ± 0.00, on average.
Meanwhile, predictions on IR64’s chromosomes by training the Extra Trees algorithm with
information from Azucena give an R2 of 0.21 ± 0.21 and an MSE of 0.03 ± 0.00, on average.
In both cases, the average correlation values between predictions and recombination
rates are 0.67 ± 0.06 for Azucena and 0.65 ± 0.07 for IR64, evidencing a positive trend
(Table 1, Figure 8).
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Several studies have focused on predicting recombination using machine learning.
For example, Liu et al. [11] combined support vector machines with consensus feature
dinucleotide-based autocross covariance to predict the recombination of hot/cold spots
in yeast. Demirci et al. [12] used features, such as gene annotation, propeller, and helical
twist, AT/TA dinucleotides, and CA dinucleotides to train machine learning models for
predicting crossover occurrences in Arabidopsis, maize, rice, and tomato. More recently,
Adrion et al. [13] proposed an approach to predict the recombination landscape in African
populations of Drosophila melanogaster using deep learning with recurrent neural networks.
For all cases, the results have been satisfactory according to the specific objective of each
study, which demonstrates the power of machine learning approaches to predict complex
traits such as chromosomal recombination.

The Extra Trees regression model makes it possible to predict chromosomal recombi-
nation using a single feature: The CHH methylated cytosine count. It is possible due to the
high correlation between this feature and the recombination rates, which behaved similarly
in all chromosomes. The model was trained on a dataset of one variety and was tested it
on the other, performing two independent tests and finding that results were consistent
(Figure 8). This opens a door for future studies. The evidence suggests that these models
can be used to predict chromosomal recombination rates in any variety of Oryza sativa rice.
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This is because the two varieties used in this study, IR64 and Azucena, are highly distant
genetically, belonging to the indica and japonica groups, respectively.
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Table 1. Performance of chromosome recombination rates predictions of IR64 and Azucena rice
varieties using the Extra Trees model trained with CHH methylation data.

Chromosome
IR64 Azucena

R2 Correlation MSE R2 Correlation MSE

1 0.00 0.63 0.03 0.44 0.67 0.02
2 0.04 0.66 0.03 0.53 0.73 0.01
3 0.37 0.70 0.02 0.49 0.72 0.02
4 0.44 0.72 0.02 0.60 0.81 0.01
5 0.59 0.81 0.02 0.67 0.84 0.01
6 0.44 0.78 0.02 0.68 0.82 0.01
7 0.16 0.53 0.04 0.50 0.73 0.02
8 0.71 0.85 0.01 0.67 0.88 0.02
9 0.32 0.65 0.03 0.50 0.75 0.02

10 0.41 0.70 0.02 0.28 0.69 0.03
11 0.30 0.70 0.02 0.52 0.77 0.01
12 0.54 0.77 0.01 0.35 0.85 0.02
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3. Materials and Methods
3.1. Recombination Rates

The recombination rates are estimated from an inter-subspecific segregating popula-
tion of 212 F11 recombinant inbred lines (RIL). They are obtained by single seed descent,
derived from the cross between the rice varieties IR64 (indica group) and Azucena (tropical
japonica group), and genotyped using shallow Illumina sequencing (~2×) followed by
imputation with NOISYmputer. Local recombination rates in cM/bp are calculated in
sliding windows of 100 kb using MapDisto.

3.2. Plant Material and Growth Conditions for Methylation Experiment

Seeds of rice varieties IR64 and Azucena were germinated and grown in a growth
chamber at 30 ◦C and 12:12 dark/light conditions for 10 days. Seedlings were transferred
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to a hydroponic medium with a Kimura B solution (pH 7) and Arnon micronutrients.
Roots from three weeks-old seedlings were collected and stored at −80 ◦C. Total genomic
DNA was extracted from frozen root tissue by CTAB 2X protocol with modifications [29].
Genomic DNA quality was evaluated on agarose gels, and DNA quantity was measured
using a Nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

3.3. Whole-Genome Bisulfite Sequencing and Data Analysis

Bisulfite-seq (BS-seq) libraries were made from genomic DNA isolated from IR64 and
Azucena seedling roots. DNA from three independent seedlings for each genotype was
pooled as one sample and sequenced. Bisulfite conversion of DNA, library construction,
and sequencing were performed by CD Genomics (CD Genomics Inc., Shirley, New York,
NY, USA). Raw data are available in the GenBank repository for IR64 (Accession number:
SRR20325840) and Azucena (Accession number: SRR20325842). Basic statistics on the
quality of the raw reads was done with the FastQC tool (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ (accessed on 5 September 2021)). Sequencing adapters
and low-quality data of the sequencing data were removed by Trimmomatic (http://
www.usadellab.org/cms/?page=trimmomatic (accessed 21 November 2021)). Cleaned
data were aligned to the reference genomes reported in the GenBank repository for IR64
(Accession number: RWKJ00000000) and Azucena (Accession number: PKQC000000000)
using Bismark v.0.16.3 [30] with default parameters. Only uniquely aligned reads were
maintained. Methylation calling data obtained from Bismark were used for further analysis.

3.4. Comparison between Recombination Rates and Methylation Patterns

To compare the methylation patterns with the local recombination rates, the genomes
were divided into 100 kb windows, in which the number of cytosines with a methylation
level greater than 75% was calculated for each of the CG, CHG, and CHH contexts. Expo-
nential smoothing with α = 0.1 was applied to the recombination and methylation data
to remove noise associated with the abrupt change in the count of methylated cytosines
in adjacent windows. Subsequently, a Pearson correlation analysis per chromosome was
developed to evaluate the linear relationships between the recombination rates and the
methylation patterns of both varieties.

3.5. Functional Evaluation

Gene, transposon, and retrotransposon annotation information from both varieties
was used (Supplementary Materials Tables S1 and S2). Pearson correlation analyses were
carried out between the number of genes, transposons, and retrotransposons with respect to
recombination of the chromosome to investigate their relationship with the recombination
landscape. Later, the start and end coordinates of these elements were used to extract the
count of methylated cytosines inside them. New correlation analyses were performed to
learn the trends between methylated cytosines for each context within these functional
elements with respect to recombination. A differentiation between the centromere and
non-centromere regions was also included.

3.6. Machine Learning Modeling

To assess the usefulness of methylation in predicting chromosome recombination,
different machine learning approaches were explored. The total counts of methylated
cytosines in windows of 100 kb belonging to the CG, CHG, and CHH contexts for each
variety were evaluated as features for machine learning modeling using the Shapley pack-
age (https://shap.readthedocs.io/en/latest/index.html (accessed on 2 February 2022)).
Subsequently, the performance of different machine learning models was evaluated using
the LazyPredict package (https://pypi.org/project/lazypredict/ (accessed on 2 February
2022)). Exponential smoothing with α = 0.1 was applied to the data input before training the
model and another one to the model output with α = 0.3. The coefficient of determination
R2 and the root of the mean square error RMSE were used to evaluate the performance

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://shap.readthedocs.io/en/latest/index.html
https://pypi.org/project/lazypredict/
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of the models. MSE was used for predictions. Pearson correlation analyses were also per-
formed to discover general linear trends between the predictions and the experimental data.
The resulting best model was fitted, and the information from the twelve chromosomes of
one variety was used as a training dataset to predict the recombination rates in each of the
twelve chromosomes of the other variety. All these analyses and the previous ones were
run in Python.

4. Conclusions

This study reported on how methylated cytosines in the CHH context positively corre-
late with recombination rates in the twelve rice chromosomes of two genetically distant rice
varieties: IR64 and Azucena. However, a negative correlation was found between methyla-
tion and recombination rates when only CG and CHG contexts were tested, as well as in
the three methylation contexts together. For this case, the positive correlation of CHH was
hidden due to the high number of methylated cytosines from the CG and CHG contexts. In
addition, functional analysis showed that genes were positively correlated with recombina-
tion rates, unlike transposons and retrotransposons, which showed a negative correlation.
The correlation between methylation and recombination suggests the same trends for the
entire genome with respect to only methylation in genes, transposons, and retrotransposons.
The influence of the centromere on methylation patterns and its correlation with recombina-
tion rates was evident, supporting the hypothesis that the position and frequency of meiotic
recombination in rice centromeric heterochromatin are regulated by the epigenetic state
of the chromatin. Finally, a machine learning model was proposed and trained using the
CHH methylated cytosine count to predict recombination rates, which obtained consistent
results in two independent data sets. This suggests that the extraction of methylation data
and the use of machine learning models in future studies is a promising path to focus on
predicting recombination rates using the count of CHH-methylated cytosines in rice as a
feature. Colleagues are invited to explore how the counting of CHH-methylated cytosines
in other species behaves with respect to chromosomal recombination.

Supplementary Materials: The following supporting information can be downloaded at: https:
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